【題目】某汽車在剎車后行駛的距離s(單位:米)與時間t(單位:秒)之間的關(guān)系得部分數(shù)據(jù)如下表:

時間t(秒)

0

0.2

0.4

0.6

0.8

1.0

1.2

行駛距離s(米)

0

2.8

5.2

7.2

8.8

10

10.8

假設(shè)這種變化規(guī)律一直延續(xù)到汽車停止.

(1)根據(jù)這些數(shù)據(jù)在給出的坐標系中畫出相應(yīng)的點;
(2)選擇適當?shù)暮瘮?shù)表示s與t之間的關(guān)系,求出相應(yīng)的函數(shù)解析式;
(3)①剎車后汽車行駛了多長距離才停止? ②當t分別為t1 , t2(t1<t2)時,對應(yīng)s的值分別為s1 , s2 , 請比較 的大小,并解釋比較結(jié)果的實際意義.

【答案】
(1)解:描點圖所示:(畫圖基本準確均給分);


(2)解:由散點圖可知該函數(shù)為二次函數(shù)

設(shè)二次函數(shù)的解析式為:s=at2+bt+c,

∵拋物線經(jīng)過點(0,0),

∴c=0,

又由點(0.2,2.8),(1,10)可得:

解得:a=﹣5,b=15;

∴二次函數(shù)的解析式為:s=﹣5t2+15t;

經(jīng)檢驗,其余各點均在s=﹣5t2+15t上


(3)解:①汽車剎車后到停止時的距離即汽車滑行的最大距離,

當t=﹣ 時,滑行距離最大,S= ,

即剎車后汽車行駛了 米才停止.

②∵s=﹣5t2+15t,∴s1=﹣5t12+15t1,s2=﹣5t22+15t2

=﹣5t1+15;

同理 =﹣5t2+15,

∵t1<t2,

,

其實際意義是剎車后到t2時間內(nèi)的平均速度小于剎車后到t1時間內(nèi)的平均速度


【解析】(1)描點,用平滑曲線連接即可;(2)設(shè)出二次函數(shù)解析式,把3個點的坐標代入可得二次函數(shù)解析式,進而再把其余的點代入驗證是否在二次函數(shù)上;(3)①汽車在剎車時間最長時停止,利用公式法,結(jié)合(2)得到的函數(shù)解析式,求得相應(yīng)的最值即可;②分別求得所給代數(shù)式的值,根據(jù)所給時間的大小,比較即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB=10,AC=BD=2,點P是CD上一動點,分別以AP、PB為邊向上、向下作正方形APEF和PHKB,設(shè)正方形對角線的交點分別為O1、O2 , 當點P從點C運動到點D時,線段O1O2中點G的運動路徑的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2 . C2的圖象與x軸交于A、B兩點(點A在點B的左側(cè)).

(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點C,與拋物線C2交于點D,與拋物線C1交于點E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點F為對稱軸DE上任意一點,在拋物線C2上是否存在這樣的點G,使以O(shè)、B、F、G四點為頂點的四邊形是平行四邊形?如果存在,請求出點G的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋中裝有紅、黃、白三種顏色球共100個,它們除顏色外都相同,其中黃球個數(shù)是白球個數(shù)的2倍少5個.已知從袋中摸出一個球是紅球的概率是
(1)求袋中紅球的個數(shù);
(2)求從袋中摸出一個球是白球的概率;
(3)取走10個球(其中沒有紅球)后,求從剩余的球中摸出一個球是紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|﹣ |+21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形紙片ABC中,AB=3,AC=4,D為斜邊BC中點,第1次將紙片折疊,使點A與點D重合,折痕與AD交于點P1;設(shè)P1D的中點為D1 , 第2次將紙片折疊,使點A與點D1重合,折痕與AD交于點P2;設(shè)P2D1的中點為D2 , 第3次將紙片折疊,使點A與點D2重合,折痕與AD交于點P3;…;設(shè)Pn1Dn2的中點為Dn1 , 第n次將紙片折疊,使點A與點Dn1重合,折痕與AD交于點Pn(n>2),則AP6的長為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的中線,點E、F在AB邊上,連接DE,CF交AD于G,點E是BF中點.

(1)求證:△AFG∽△AED
(2)若FG=2,G為AD中點,求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩座城市的中心火車站A,B兩站相距360 km.一列動車與一列特快列車分別從A,B兩站同時出發(fā)相向而行,動車的平均速度比特快列車快54 km/h,當動車到達B站時,特快列車恰好到達距離A135 km處的C站.求動車和特快列車的平均速度各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段OA=2,OP=1,將線段OP繞點O任意旋轉(zhuǎn)時,線段AP的長度也隨之改變,則下列結(jié)論:

AP的最小值是1,最大值是4;

AP=2時,△APO是等腰三角形;

AP=1時,△APO是等腰三角形;

AP時,△APO是直角三角形;

AP時,△APO是直角三角形.

其中正確的是(  )

A. ①④⑤ B. ②③⑤ C. ②④⑤ D. ③④⑤

查看答案和解析>>

同步練習(xí)冊答案