【題目】某市有兩家出租車公司,收費標(biāo)準(zhǔn)不同,甲公司收費標(biāo)準(zhǔn)為:起步價8元,超過3千米后,超過的部分按照每千米1.5元收費;乙公司收費標(biāo)準(zhǔn)為:起步價11元,超過3千米后,超過的部分按照每千米1.2元收費,車輛行駛千米,本題中取整數(shù),不足1千米的路程按1千米計費,根據(jù)上述內(nèi)容,完成以下問題:
(1)當(dāng)時,乙公司比甲公司貴______元;
(2)當(dāng),且為整數(shù)時,甲乙兩公司的收費分別是多少?(結(jié)果用化簡后的含的式子表示);
(3)當(dāng)行駛路程為18千米時,哪家公司的費用更便宜?便宜多少?
【答案】(1)3;(2)甲公司的收費是:1.5x+3.5;乙公司的收費是:1.2x+7.4;(3)乙公司的費用更便宜,便宜1.5元.
【解析】
(1)當(dāng)0<x<3時,甲公司收費為8元,乙公司收費為11元,據(jù)此可得答案;
(2)根據(jù)甲、乙兩公司的收費標(biāo)準(zhǔn)分別列出代數(shù)式即可;
(3)當(dāng)x=18時,分別求出代數(shù)式的值,比較即可.
解:(1)當(dāng)0<x<3時,由題意得,甲公司收費為8元,乙公司收費為11元,
∵118=3(元),
∴乙公司比甲公司貴3元;
(2)當(dāng)x>3,且x為整數(shù)時,
甲公司的收費是:8+1.5(x3)=1.5x+3.5,
乙公司的收費是:11+1.2(x3)=1.2x+7.4;
(3)當(dāng)行駛路程為18千米,即x=18時,
甲公司的收費是:1.5x+3.5=1.5×18+3.5=30.5(元),
乙公司的收費是:1.2x+7.4=1.2×18+7.4=29(元),
∵30.529=1.5(元),
∴乙公司的費用更便宜,便宜1.5元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩城相距900千米,一輛客車從A城開往B城,車速為每小時80千米,同時一輛出租車從B城開往A城,車速為每小時100千米,設(shè)客車出發(fā)時間為t(小時).
探究 若客車、出租車距A城的距離分別為y1、y2,寫出y1、y2關(guān)于t的函數(shù)關(guān)系式及自變量取值范圍,并計算當(dāng)y1=240千米時y2的値.
發(fā)現(xiàn) (1)設(shè)點C是A城與B城的中點,AC=AB,通過計算說明:哪個車先到達C城?該車到達C后再經(jīng)過多少小時,另一個車會到達C?
(2)若兩車扣相距100千米時,求時間t.
決策 已知客車和出租車正好在A,B之間的服務(wù)站D處相遇,此時出租車乘客小王突然接到開會通知,需要立即返回,此時小王有兩種選擇返回B城的方案:
方案一:繼續(xù)乘坐出租車到C城,加油后立刻返回B城,出租車加油時間忽略不計;
方案二:在D處換乘客車返回B城.
試通過計算,分析小王選擇哪種方式能更快到達B城?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與相交于點,,將一直角三角尺的直角頂點與點重合,平分.
(1)的度數(shù)為______________;
(2)將三角尺以每秒的速度繞點順時針旋轉(zhuǎn),同時直線也以每秒的速度繞點順時針旋轉(zhuǎn),設(shè)運動時間為秒.
①求當(dāng)為何值時,直線平分;
②求當(dāng)為何值時,直線平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中正確的是( )
A. ①②③ B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)
(1)若商店計劃銷售完這批商品后能獲利1 100元,請問甲、乙兩種商品應(yīng)分別購進多少件?
(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并指出獲利最大的購貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分線交于O點,過點O作BC的平行線交AB于M點,交AC于N點,則△AMN的周長為( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M為等腰△ABD的底AB的中點,過D作DC∥AB,連結(jié)BC;AB=8cm,DM=4cm,DC=1cm,動點P自A點出發(fā),在AB上勻速運動,動點Q自點B出發(fā),在折線BC﹣CD上勻速運動,速度均為1cm/s,當(dāng)其中一個動點到達終點時,它們同時停止運動,設(shè)點P運動t(s)時,△MPQ的面積為S(不能構(gòu)成△MPQ的動點除外).
(1)t(s)為何值時,點Q在BC上運動,t(s)為何值時,點Q在CD上運動;
(2)求S與t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時,S有最大值,最大值是多少?
(4)當(dāng)點Q在CD上運動時,直接寫出t為何值時,△MPQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長.
【答案】BC=8.
【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識進行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點睛:直徑所對的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點.過點B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點,且y1≥y2,求實數(shù)p的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com