【題目】計算:
(1)(-5a4)·(-8ab2)=_______;
(2)(-x2yz2)2·(3xy2)2=_______;
(3)a(2-a)-2(a+1)=________;
(4)(4x2-3x+6)·(-x)=_______;
(5)3x2y·(x3y2)·(5xy2)=________
【答案】40a5b2 x6y6z4 -a2-2 -2x3+x2-3x 5x6y5
【解析】
(1)直接利用單項式乘以單項式的運算法則求出答案;
(2)先計算乘方運算,再利用單項式乘以單項式的運算法則求出答案;
(3)去括號合并即可得到結果;
(4)直接利用單項式乘以多項式的運算法則求出答案;
(5)直接利用單項式乘以單項式的運算法則求出答案.
解:(1)原式=40a5b2;
(2)原式=x4y2z4·9x2y4=x6y6z4;
(3)原式=2a-a2-2a-2=-a2-2;
(4)原式=-2x3+x2-3x;
(5)原式=5x6y5.
故答案為:(1)40a5b2;(2)x6y6z4;(3)-a2-2;(4)-2x3+x2-3x;(5)5x6y5.
科目:初中數(shù)學 來源: 題型:
【題目】關于x的不等式組
(1)不等式組有無數(shù)個解,的取值范圍是多少?
(2)不等式組只有三個整數(shù)解,的取值范圍是多少?
(3)不等式組無解,的取值范圍是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為測量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫一個邊長為2cm的正方形,使不規(guī)則區(qū)域落在正方形內,現(xiàn)向正方形內隨機投擲小石子(假設小石子落在正方形內每一點都是等可能的),經(jīng)過大量重復投擲試驗,發(fā)現(xiàn)小石子落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.25附近,由此可估計不規(guī)則區(qū)域的面積是m2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE均為等腰直角三角形,,B、C、E三點共線,BE平分∠AED,F(xiàn)為CD的中點,AF、AC的延長線分別交DE于H、G點。
求證:⑴; ⑵
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,AC=4cm,BC=3cm,將三角形ABC沿AB方向向右平移得到三角形DEF,若AE=8cm,DB=2cm.
(1)求三角形ABC向右平移的距離AD的長;
(2)求四邊形AEFC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為組織代表隊參加市“拜炎帝、誦經(jīng)典”吟誦大賽,初賽后對選手成績進行了整理,分成5個小組(x表示成績,單位:分),A組:75≤x<80;B組:80≤x<85;C組:85≤x<90;D組:90≤x<95;E組:95≤x<100.并繪制出如圖兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息,解答下列問題:
(1)參加初賽的選手共有名,請補全頻數(shù)分布直方圖;
(2)扇形統(tǒng)計圖中,C組對應的圓心角是多少度?E組人數(shù)占參賽選手的百分比是多少?
(3)學校準備組成8人的代表隊參加市級決賽,E組6名選手直接進入代表隊,現(xiàn)要從D組中的兩名男生和兩名女生中,隨機選取兩名選手進入代表隊,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌A、B、C、D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A、B、C、D表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( ) ①試驗條件不會影響某事件出現(xiàn)的頻率;
②在相同的條件下試驗次數(shù)越多,就越有可能得到較精確的估計值,但各人所得的值不一定相同;
③如果一枚骰子的質量分布均勻,那么拋擲后每個點數(shù)出現(xiàn)的機會均等;
④拋擲兩枚質量分布均勻的相同的硬幣,出現(xiàn)“兩個正面”、“兩個反面”、“一正一反”的機會相同.
A.①②
B.②③
C.③④
D.①③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索與發(fā)現(xiàn):
(1)若直線a1⊥a2,a2∥a3,則直線a1與a3的位置關系是__________,請說明理由.
(2)若直線a1⊥a2,a2∥a3,a3⊥a4,則直線a1與a4的位置關系是________.(直接填結論,不需要證明)
(3)現(xiàn)在有2 011條直線a1,a2,a3,…,a2 011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,請你探索直線a1與a2 011的位置關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com