【題目】下列函數(shù)中,對于任意實數(shù)x1,x2,當(dāng)x1>x2時,滿足y1<y2的是( )
A. y=﹣3x+2B. y=2x+1C. y=5xD. y=
【答案】A
【解析】
根據(jù)一次函數(shù)和反比函數(shù)的增減性,即可判斷.
在y=﹣3x+2中,y隨x的增大而減小,∴對于任意實數(shù)x1,x2,當(dāng)x1>x2時,滿足y1<y2,故選項A正確,
在y=2x+1中,y隨x的增大而增大,∴對于任意實數(shù)x1,x2,當(dāng)x1>x2時,滿足y1>y2,故選項B錯誤,
在y=5x中,y隨x的增大而增大,∴對于任意實數(shù)x1,x2,當(dāng)x1>x2時,滿足y1>y2,故選項C錯誤,
在y=﹣中,在每個象限內(nèi),y隨x的增大而增大,當(dāng)x1>x2>0時,滿足y1>y2,故選項D錯誤,
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 要比較a與b的大小,可以先求a與b的差,再看這個差是正數(shù)、負(fù)數(shù)還是零.由此可見,要判斷兩個式子值的大小,只要考慮它們的差就可以了.
已知A=16a2+a+15 , B=4a2+a+7 , C=a2+a+4.
請你按照上述文字提供的信息:(1)試比較A與2B的大小; (2)試比較2B與3C的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)菱形ABCD中,兩條對角線AC,BD相交于點O,∠MON+∠BCD=180°,∠MON繞點O旋轉(zhuǎn),射線OM交邊BC于點E,射線ON交邊DC于點F,連接EF.
(1)如圖1,當(dāng)∠ABC=90°時,△OEF的形狀是 ;
(2)如圖2,當(dāng)∠ABC=60°時,請判斷△OEF的形狀,并說明理由;
(3)在(1)的條件下,將∠MON的頂點移到AO的中點O′處,∠MO′N繞點O′旋轉(zhuǎn),仍滿足∠MO′N+∠BCD=180°,射線O′M交直線BC于點E,射線O′N交直線CD于點F,當(dāng)BC=4,且時,直接寫出線段CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計劃把一塊近似于直角三角形的廢地開發(fā)為生物園,如圖所示,∠ACB=90°,BC=60米,∠A=36°.
(1)若入口處E在AB邊上,且與A、B等距離,求CE的長(精確到個位);
(2)若D點在AB邊上,計劃沿線段CD修一條水渠.已知水渠的造價為50元/米,水渠路線應(yīng)如何設(shè)計才能使造價最低,求出最低造價.
(其中sin36°=0.5878,cos36°=0.8090,tan36°=0.7265)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
【答案】(1)b=﹣2a,頂點D的坐標(biāo)為(﹣,﹣);(2);(3) 2≤t<.
【解析】試題分析:(1)把M點坐標(biāo)代入拋物線解析式可得到b與a的關(guān)系,可用a表示出拋物線解析式,化為頂點式可求得其頂點D的坐標(biāo);
(2)把點代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關(guān)于x的一元二次方程,可求得另一交點N的坐標(biāo),根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫圖1,根據(jù)面積和可得的面積即可;
(3)先根據(jù)a的值確定拋物線的解析式,畫出圖2,先聯(lián)立方程組可求得當(dāng)GH與拋物線只有一個公共點時,t的值,再確定當(dāng)線段一個端點在拋物線上時,t的值,可得:線段GH與拋物線有兩個不同的公共點時t的取值范圍.
試題解析:(1)∵拋物線有一個公共點M(1,0),
∴a+a+b=0,即b=2a,
∴拋物線頂點D的坐標(biāo)為
(2)∵直線y=2x+m經(jīng)過點M(1,0),
∴0=2×1+m,解得m=2,
∴y=2x2,
則
得
∴(x1)(ax+2a2)=0,
解得x=1或
∴N點坐標(biāo)為
∵a<b,即a<2a,
∴a<0,
如圖1,設(shè)拋物線對稱軸交直線于點E,
∵拋物線對稱軸為
設(shè)△DMN的面積為S,
(3)當(dāng)a=1時,
拋物線的解析式為:
有
解得:
∴G(1,2),
∵點G、H關(guān)于原點對稱,
∴H(1,2),
設(shè)直線GH平移后的解析式為:y=2x+t,
x2x+2=2x+t,
x2x2+t=0,
△=14(t2)=0,
當(dāng)點H平移后落在拋物線上時,坐標(biāo)為(1,0),
把(1,0)代入y=2x+t,
t=2,
∴當(dāng)線段GH與拋物線有兩個不同的公共點,t的取值范圍是
【題型】解答題
【結(jié)束】
24
【題目】在△ABC中,AB=AC,點D是直線BC上的一點(不與B,C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE,設(shè)∠BAC=α,∠BCE=β.
(1)如圖①,當(dāng)點D在線段BC上,如果α=60°,β=120°;
如圖②,當(dāng)點D在線段BC上,如果α=90°,β=90°
如圖③,當(dāng)點D在線段BC上,如果α,β之間有什么樣的關(guān)系?請直接寫出.
(2)如圖④,當(dāng)點D在射線BC上,(1)中結(jié)論是否成立?請說明理由.
(3)如圖⑤,當(dāng)點D在射線CB上,且在線段BC外,(1)中結(jié)論是否成立?若不成立,請直接寫出你認(rèn)為正確的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a<0)的圖象與x軸的兩個交點A、B的橫坐標(biāo)分別為﹣3、1,與y軸交于點C,下面四個結(jié)論:①16a+4b+c<0;②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點,則y1>y2;③c=﹣3a;④若△ABC是等腰三角形,則b=﹣或﹣.其中正確的有_____.(請將正確結(jié)論的序號全部填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當(dāng)點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C、D四個車站的位置如圖所示:
(1)求A、D兩站的距離;
(2)求C、D兩站的距離;
(3)比較A、C兩站的距離與B、D兩站的距離,哪兩站的距離更大?大多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx-2與x軸的兩個交點分別為A(1,0),B(4,0),與y軸的交點為C.
(1)求出拋物線的解析式及點C的坐標(biāo);
(2)點P是在直線x=4右側(cè)的拋物線上的一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OCB相似?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com