【題目】某快遞公司每天上午9001000為集中攬件和派件時(shí)段,甲倉(cāng)庫(kù)用來攬收快件,乙倉(cāng)庫(kù)用來派發(fā)快件,該時(shí)段內(nèi)甲,乙兩倉(cāng)庫(kù)的快件數(shù)量(件)與時(shí)間(分)之間的函數(shù)圖象如圖所示,那么當(dāng)兩倉(cāng)庫(kù)快遞件數(shù)相同時(shí),此刻的時(shí)間為( )

A. 915B. 920C. 925D. 930

【答案】B

【解析】

分別求出甲、乙兩倉(cāng)庫(kù)的快件數(shù)量y(件)與時(shí)間x(分)之間的函數(shù)關(guān)系式,求出兩條直線的交點(diǎn)坐標(biāo)即可.

設(shè)甲倉(cāng)庫(kù)的快件數(shù)量y(件)與時(shí)間x(分)之間的函數(shù)關(guān)系式為:y1=k1x+40,根據(jù)題意得60k1+40=400,解得k1=6,

y1=6x+40

設(shè)乙倉(cāng)庫(kù)的快件數(shù)量y(件)與時(shí)間x(分)之間的函數(shù)關(guān)系式為:y2=k2x+240,根據(jù)題意得60k2+240=0,解得k2=-4

y2=-4x+240,

聯(lián)立,解得,

∴此刻的時(shí)間為920

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測(cè)得旗桿頂端E的俯角α45°,旗桿低端D到大樓前梯坎底邊的距離DC20米,梯坎坡長(zhǎng)BC12米,梯坎坡度i=1: ,則大樓AB的高度為________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程時(shí),配方有錯(cuò)誤的是( )

A.x2﹣2x﹣99=0化為(x﹣1)2=100

B.x2+8x+9=0化為(x+4)2=25

C.2t2﹣7t﹣4=0化為(t﹣2=

D.3x2﹣4x﹣2=0化為(x﹣2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAEBRtAFC中,∠E=F=90°,BE=CFBEAC相交于點(diǎn)M,與CF相交于點(diǎn)D,ABCF相交于點(diǎn)N,∠EAC=FAB.有下列結(jié)論:①∠B=C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正確結(jié)論的序號(hào)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABBC2CDABCD,∠C90°,EBC的中點(diǎn),AEBD相交于點(diǎn)F,連接DE.

(1)求證:ABE≌△BCD

(2)判斷線段AEBD的數(shù)量關(guān)系及位置關(guān)系,并說明理由;

(3)CD1,試求AED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)x>0)的圖象與一次函數(shù)y=3x的圖象相交于點(diǎn)A,其橫坐標(biāo)為2.

(1)求k的值;

(2)點(diǎn)B為此反比例函數(shù)圖象上一點(diǎn),其縱坐標(biāo)為3.過點(diǎn)BCBOA,交x軸于點(diǎn)C,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】朱錦汶同學(xué)學(xué)習(xí)了全等三角形后,利用全等三角形繪制出了下面系列圖案,第(1)個(gè)圖案由2個(gè)全等的三角形組成,第(2)個(gè)圖案由4個(gè)全等的三角形組成,(3)個(gè)圖案由7個(gè)全等的三角形組成,(4)個(gè)圖案由12個(gè)全等的三角形組成.則第(8)個(gè)圖案中全等三角形的個(gè)數(shù)為(

A.52B.136C.256D.264

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在坐標(biāo)平面內(nèi),等腰直角中,,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為軸于點(diǎn).

1)求點(diǎn)的坐標(biāo);

2)求點(diǎn)的坐標(biāo);

3)如圖,點(diǎn)軸上,當(dāng)的周長(zhǎng)最小時(shí),求出點(diǎn)的坐標(biāo);

4)在直線上有點(diǎn),在軸上有點(diǎn),求出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了積極響應(yīng)國(guó)家新農(nóng)村建設(shè),某市鎮(zhèn)政府采用了移動(dòng)宣講的形式進(jìn)行宣傳動(dòng)員.如圖,筆直公路的一側(cè)點(diǎn)處有一村莊,村莊到公路的距離為800米,假使宣講車周圍1000米以內(nèi)能聽到廣播宣傳,宣講車在公路上沿方向行駛時(shí):

1)請(qǐng)問村莊能否聽到宣傳,并說明理由;

2)如果能聽到,已知宣講車的速度是每分鐘300米,那么村莊總共能聽到多長(zhǎng)時(shí)間的宣傳?

查看答案和解析>>

同步練習(xí)冊(cè)答案