【題目】將一列有理數(shù)-1,2,-3,4,-5,6,……,如圖所示有序排列.根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢?/span>(C的位置)是有理數(shù)4.則-2019應(yīng)排在A,B,C,D,E中______的位置.
【答案】C
【解析】
根據(jù)題中圖形布列規(guī)律得出每個(gè)峰的封頂位置數(shù)的絕對(duì)值規(guī)律為5n-1,第奇數(shù)個(gè)峰的峰頂位置數(shù)為正數(shù),第偶數(shù)個(gè)峰的峰頂位置數(shù)為負(fù)數(shù),因?yàn)?/span>2019=404×5-1,即可判斷-2019位于第404個(gè)峰的峰頂位置.
解:∵峰1,峰2,峰3,…的峰頂位置數(shù)分別是4,-9,14,…
∴第n個(gè)峰的峰頂位置數(shù)的絕對(duì)值為5n-1,第奇數(shù)個(gè)峰的峰頂位置數(shù)為正數(shù),第偶數(shù)個(gè)峰的峰頂位置數(shù)為負(fù)數(shù)
∵2019=2020-1=404×5-1
∴-2019位于第404個(gè)峰的C位置.
故答案為:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅行社推出一條成本價(jià)位500元/人的省內(nèi)旅游線路,游客人數(shù)y(人/月)與旅游報(bào)價(jià)x(元/人)之間的關(guān)系為y=﹣x+1300,已知:旅游主管部門(mén)規(guī)定該旅游線路報(bào)價(jià)在800元/人~1200元/人之間.
(1)要將該旅游線路每月游客人數(shù)控制在200人以?xún)?nèi),求該旅游線路報(bào)價(jià)的取值范圍;
(2)求經(jīng)營(yíng)這條旅游線路每月所需要的最低成本;
(3)檔這條旅游線路的旅游報(bào)價(jià)為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】(1)取值范圍為1100元/人~1200元/人之間;(2)50000;(3)x=900時(shí),w最大=160000
【解析】試題分析:(1)根據(jù)題意列不等式求解可;
(2)根據(jù)報(bào)價(jià)減去成本可得到函數(shù)的解析式,根據(jù)一次函數(shù)的圖像求解即可;
(3)根據(jù)利潤(rùn)等于人次乘以?xún)r(jià)格即可得到函數(shù)的解析式,然后根據(jù)二次函數(shù)的最值求解即可.
試題解析:(1)∵由題意得時(shí),即,
∴解得
即要將該旅游線路每月游客人數(shù)控制在200人以?xún)?nèi),該旅游線路報(bào)價(jià)的取值范圍為1100元/人~1200元/人之間;
(2),,∴
∵,∴當(dāng)時(shí),z最低,即;
(3)利潤(rùn)
當(dāng)時(shí),.
【題型】解答題
【結(jié)束】
23
【題目】已知四邊形ABCD中,AB=AD,對(duì)角線AC平分∠DAB,過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,點(diǎn)F為AB上一點(diǎn),且EF=EB,連接DF.
(1)求證:CD=CF;
(2)連接DF,交AC于點(diǎn)G,求證:△DGC∽△ADC;
(3)若點(diǎn)H為線段DG上一點(diǎn),連接AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABC的平分線與CD的延長(zhǎng)線交于點(diǎn)E,與AD交于點(diǎn)F,且點(diǎn)F恰好為邊AD的中點(diǎn).
(1)求證:△ABF≌△DEF;
(2)若AG⊥BE于G,BC=4,AG=1,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央電視臺(tái)的“中國(guó)詩(shī)詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級(jí)模擬開(kāi)展“中國(guó)詩(shī)詞大賽”比賽,對(duì)全年級(jí)同學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí),并根據(jù)成績(jī)繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對(duì)應(yīng)的扇形的圓心角為 度,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)此次比賽有四名同學(xué)活動(dòng)滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國(guó)詩(shī)詞大賽”比賽,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】地球運(yùn)動(dòng)是同學(xué)們非常喜歡的日常體育運(yùn)動(dòng),為了更合理地配置體育運(yùn)動(dòng)器材和場(chǎng)地,某校針對(duì)“你最喜歡的球類(lèi)運(yùn)動(dòng)”進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名被調(diào)查者分別選一項(xiàng)球類(lèi)運(yùn)動(dòng)),并把調(diào)查結(jié)果繪制成如圖的兩個(gè)統(tǒng)計(jì)圖表(不完整).
某校學(xué)生最喜愛(ài)的球類(lèi)運(yùn)動(dòng)統(tǒng)計(jì)表
最喜愛(ài)的球類(lèi)運(yùn)動(dòng) | 人數(shù) |
足球 | 27 |
籃球 | |
乒乓球 | 24 |
羽毛球 | 24 |
排球 |
某校學(xué)生最喜愛(ài)的球類(lèi)運(yùn)動(dòng)統(tǒng)計(jì)圖
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)本次被抽樣調(diào)查的學(xué)生共有多少人?
(2)求扇形統(tǒng)計(jì)圖中最喜愛(ài)籃球部分的圓心角度數(shù);
(3)若該校共有學(xué)生960人,請(qǐng)根據(jù)抽樣結(jié)果估計(jì)學(xué)生中最喜愛(ài)乒乓球的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王家新買(mǎi)的一套住房的建筑平面圖如圖所示(單位:米).
(1)這套住房的建筑總面積是多少平方米?(用含a,b,c的式子表示)
(2)若a=10,b=4,c=7,試求出小王家這套住房的具體面積.
(3)地面裝修要鋪設(shè)瓷磚,公司報(bào)價(jià)是:客廳地面每平方米240元,臥室地面每平方米220元,廚房地面每平方米180元,衛(wèi)生間地面每平方米150元.在(2)的條件下,小王一共要花多少錢(qián)?
(4)這套住房的售價(jià)為每平方米15000元,購(gòu)房時(shí)首付款為房?jī)r(jià)的40%,余款向銀行申請(qǐng)貸款,在(2)的條件下,小王家購(gòu)買(mǎi)這套住房時(shí)向銀行申請(qǐng)貸款的金額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,四邊形OABC為菱形,A點(diǎn)的坐標(biāo)為,對(duì)角線OB、AC相交于D點(diǎn),雙曲線經(jīng)過(guò)D點(diǎn),交BC的延長(zhǎng)線于E點(diǎn),且,則E點(diǎn)的坐標(biāo)是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷(xiāo)售圖像,圖1是產(chǎn)品銷(xiāo)售量y(件)與時(shí)間t(天)的函數(shù)關(guān)系,圖2是一件產(chǎn)品的銷(xiāo)售利潤(rùn)z(元)與時(shí)間t(天)的函數(shù)關(guān)系,已知日銷(xiāo)售利潤(rùn)=日銷(xiāo)售量×每件產(chǎn)品的銷(xiāo)售利潤(rùn),下列結(jié)論錯(cuò)誤的是( )。
A. 第24天的銷(xiāo)售量為200件B. 第10天銷(xiāo)售一件產(chǎn)品的利潤(rùn)是15元
C. 第12天與第30天這兩天的日銷(xiāo)售利潤(rùn)相等D. 第30天的日銷(xiāo)售利潤(rùn)是750元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在橫線上完成下面的證明,并在括號(hào)內(nèi)注明理由.
已知:如圖,∠ABC+∠BGD=180°,∠1=∠2.
求證:EF∥DB.
證明:∵∠ABC+∠BGD=180°,(已知)
∴ .( )
∴∠1=∠3.( )
又∵∠1=∠2,(已知)
∴ .( )
∴EF∥DB.( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com