【題目】某數(shù)學(xué)活動小組在作三角形的拓展圖形,研究其性質(zhì)時,經(jīng)歷了如下過程:
●操作發(fā)現(xiàn):
在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖1所示,其中DF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G,M是BC的中點(diǎn),連接MD和ME,則下列結(jié)論正確的是 (填序號即可)
①AF=AG=AB;②MD=ME;③整個圖形是軸對稱圖形;④∠DAB=∠DMB.
●數(shù)學(xué)思考:
在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點(diǎn),連接MD和ME,則MD和ME具有怎樣的數(shù)量和位置關(guān)系?請給出證明過程;
●類比探索:
在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點(diǎn),連接MD和ME,試判斷△MED的形狀.
答: .
【答案】詳見解析
【解析】
(1) 由圖形的對稱性易知①、②、③都正確,④∠DAB=∠DMB=450也正確。
(2)受圖1△DFM≌△MGE的啟發(fā),應(yīng)想到取中點(diǎn)構(gòu)造全等來證MD=ME,證MD⊥ME就是要證∠DME=900,由△DFM≌△MGE得∠EMG=∠MDF, △DFM中四個角相加為180°,∠FMG可看成三個角的和,通過變形計算可得∠DME=900。
(3)在(2)的基礎(chǔ)易知為等腰直角三解形。
解:
●操作發(fā)現(xiàn):①②③④。
●數(shù)學(xué)思考:答:MD=ME,MD⊥ME, 證明如下:
1、MD=ME:
如圖,分別取AB,AC的中點(diǎn)F,G,連接DF,MF,MG,EG,
∵M(jìn)是BC的中點(diǎn),∴MF∥AC,MF=AC。
又∵EG是等腰Rt△AEC斜邊上的中線,
∴EG⊥AC且EG=AC。
∴MF=EG。
同理可證DF=MG。
∵M(jìn)F∥AC,∴∠MFA+∠BAC=1800。
同理可得∠MGA+∠BAC=1800。
∴∠MFA=∠MGA。
又∵EG⊥AC,∴∠EGA=900。
同理可得∠DFA=900。
∴∠MFA+∠DFA=∠MGA=∠EGA,即∠DFM=∠MEG。
又MF=EG,DF=MG,∴△DFM≌△MGE(SAS)!郙D=ME。
2、MD⊥ME:
∵M(jìn)G∥AB,∴∠MFA+∠FMG=1800。
又∵△DFM≌△MGE,∴∠MEG=∠MDF。
∴∠MFA+∠FMD+∠DME+∠MDF=1800。
∵∠MFA+∠FMD+∠MDF=900,∴∠DME=90°,即MD⊥ME。
●類比探究:答:等腰直角三解形。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2﹣(m﹣1)x﹣1=0.
(1)求證:這個一元二次方程總有兩個實(shí)數(shù)根;
(2)若二次函數(shù)y=mx2﹣(m﹣1)x﹣1有最大值0,則m的值為 ;
(3)若x1、x2是原方程的兩根,且=2x1x2+1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,沿EF將矩形折疊,使A、C重合,AC與EF交于點(diǎn)H.
(1)求證:△ABE≌△AGF;
(2)若AB=6,BC=8,求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹“減負(fù)增效”精神,掌握九年級600名學(xué)生每天的自主學(xué)習(xí)情況,某校學(xué)生會隨機(jī)抽查了九年級的部分學(xué)生,并調(diào)查他們每天自主學(xué)習(xí)的時間.根據(jù)調(diào)查結(jié)果,制作了兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據(jù)統(tǒng)計圖中的信息回答下列問題:
(1)本次調(diào)查的學(xué)生人數(shù)是 人;
(2)圖2中α是 度,并將圖1條形統(tǒng)計圖補(bǔ)充完整;
(3)請估算該校九年級學(xué)生自主學(xué)習(xí)時間不少于1.5小時有 人;
(4)老師想從學(xué)習(xí)效果較好的4位同學(xué)(分別記為A、B、C、D,其中A為小亮)隨機(jī)選擇兩位進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)交流,用列表法或樹狀圖的方法求出選中小亮A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動,同時點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動.速度均為每秒1個單位長度,運(yùn)動時間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E
①過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時,線段EG最長?
②連接EQ.在點(diǎn)P、Q運(yùn)動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?請直接寫出相應(yīng)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式;
(3)點(diǎn)P是x軸上的一動點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,AB=10,0°<∠C<60°,AF⊥BC于點(diǎn)F,在FC上截取FD=FB,點(diǎn)E是AC上一點(diǎn),連接DA、DE,且∠ADE=∠B.
(1)求證:ED=EC;
(2)若∠C=30°,求BD長;
(3)在(2)的條件下,將圖中△DEC繞點(diǎn)D逆時針旋轉(zhuǎn)得到△DE′C′,請問在旋轉(zhuǎn)的過程中,以點(diǎn)C、E、C′、E′為頂點(diǎn)的四邊形可以構(gòu)成平行四邊形嗎?若可以,請求出該平行四邊形的面積,若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)C在y軸的正半軸上,點(diǎn)B在雙曲線(x<0)上,點(diǎn)D在雙曲線(x>0)上,點(diǎn)D的坐標(biāo)是 (3,3)
(1)求k的值;
(2)求點(diǎn)A和點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)G在邊BC上(不與點(diǎn)B,C重合),連接AG,作DE⊥AG于點(diǎn)E,BF⊥AG于點(diǎn)F,設(shè)=k.
(1)求證:AE=BF;
(2)求證:=k;
(3)連接DF,當(dāng)∠EDF=30°時,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com