【題目】如圖,在平面直角坐標(biāo)系中,三個(gè)頂點(diǎn)的坐標(biāo)分別為A2,3)、B1,1)、C5,1).

1)把平移后,其中點(diǎn)移到點(diǎn),面出平移后得到的;

2)把繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),畫出旋轉(zhuǎn)后得到的,并求出旋轉(zhuǎn)過程中點(diǎn)經(jīng)過的路徑長(zhǎng)(結(jié)果保留根號(hào)和).

【答案】(1)詳見解析;(2)畫圖詳見解析,

【解析】

1)根據(jù)點(diǎn)A、BC的坐標(biāo)描點(diǎn),從而可得到△ABC,利用點(diǎn)A的坐標(biāo)關(guān)系可判斷△ABC先向右平移3個(gè)單位,再向上平移2個(gè)單位得到,利用此平移規(guī)律找到的坐標(biāo),然后描點(diǎn)即可得到;

2)按要求畫即可,其中旋轉(zhuǎn)90度是關(guān)鍵,根據(jù)弧長(zhǎng)公式計(jì)算即可.

解:(1)如圖,即為所求.

2)如圖,即為所求,

繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)得,

∴點(diǎn)經(jīng)過的路徑長(zhǎng)是圓心角為90°,半徑為:的扇形的弧長(zhǎng),

即點(diǎn)經(jīng)過的路徑長(zhǎng)為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售一種商品,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),該商品的周銷售量(件)是售價(jià)(元/件)的一次函數(shù).其售價(jià)、周銷售量、周銷售利潤(rùn)(元)的三組對(duì)應(yīng)值如下表:

售價(jià)(元/件)

50

60

80

周銷售量(件)

100

80

40

周銷售利潤(rùn)(元)

1000

1600

1600

注:周銷售利潤(rùn)=周銷售量×(售價(jià)-進(jìn)價(jià))

1)求關(guān)于的函數(shù)解析式(不寫出自變量的取值范圍);

2)該商品進(jìn)價(jià)是 /件;求售價(jià)是多少元/件時(shí),周銷售利潤(rùn)最大,最大利潤(rùn)是多少元?

3)由于某種原因,該商品進(jìn)價(jià)提高了/件(),物價(jià)部門規(guī)定該商品售價(jià)不得超過65/件.該商店在今后的銷售中,周銷售量與售價(jià)仍然滿足(1)中函數(shù)關(guān)系.若周銷售最大利潤(rùn)是1400元,則的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形 OABC 為菱形,點(diǎn) C 的坐標(biāo)為(4,0),∠AOC = 60°,垂直于 x 軸的直線 l y 軸出發(fā),沿 x 軸正方向以每秒 1 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),設(shè)直線 l 菱形 OABC 的兩邊分別交與點(diǎn) MN(點(diǎn) M 在點(diǎn) N 的上方).

1)求 A、B 兩點(diǎn)的坐標(biāo);

2)設(shè) OMN 的面積為 S,直線 l 運(yùn)動(dòng)時(shí)間為 t 秒(0 ≤t ≤6 ),試求 S t 的函數(shù)表達(dá) 式;

3)在題(2)的條件下,t 為何值時(shí),S 的面積最大?最大面積是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,點(diǎn)的中點(diǎn),連接并延長(zhǎng),交的延長(zhǎng)線于點(diǎn).

1)求證:.

2)連接,,當(dāng)______時(shí),四邊形是正方形.請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ACBD是對(duì)角線,△ABC是等邊三角形.線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CE,連接AE

1)求證:AEBD

2)若∠ADC30°,AD3,BD4.求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象的頂點(diǎn)在的圖象上,則稱的伴隨函數(shù),如的伴隨函數(shù).

1)若函數(shù)的伴隨函數(shù),求的值;

2)已知函數(shù)的伴隨函數(shù).

①當(dāng)點(diǎn)(2,-2)在二次函數(shù)的圖象上時(shí),求二次函數(shù)的解析式;

②已知矩形,為原點(diǎn),點(diǎn)軸正半軸上,點(diǎn)軸正半軸上,點(diǎn)6,2),當(dāng)二次函數(shù)的圖象與矩形有三個(gè)交點(diǎn)時(shí),求此二次函數(shù)的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,其中點(diǎn)A(5,4),B(1,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1

(1)畫出△A1OB1;

(2)在旋轉(zhuǎn)過程中點(diǎn)B所經(jīng)過的路徑長(zhǎng)為______;

(3)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+3(a≠0)的對(duì)稱軸為直線x=﹣1,拋物線交x軸于A、C兩點(diǎn),與直線yx1交于A、B兩點(diǎn),直線AB與拋物線的對(duì)稱軸交于點(diǎn)E

(1)求拋物線的解板式.

(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動(dòng),若△ABP的面積最大,求此時(shí)點(diǎn)P的坐標(biāo).

(3)在平面直角坐標(biāo)系中,以點(diǎn)B、ECD為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出符合條件點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,圓心為Pxy)的動(dòng)圓經(jīng)過點(diǎn)A1,2)且與x軸相切于點(diǎn)B

1)當(dāng)x=2時(shí),求⊙P的半徑;

2)求y關(guān)于x的函數(shù)解析式;判斷此函數(shù)圖象的形狀;并在圖②中畫出此函數(shù)的圖象;

3)當(dāng)⊙P的半徑為1時(shí),若⊙P與以上(2)中所得函數(shù)圖象相交于點(diǎn)CD,其中交點(diǎn)Dmn)在點(diǎn)C的右側(cè),請(qǐng)利用圖②,求cosAPD的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案