【題目】數(shù)學(xué)興趣小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整:

(1)自變量x的取值范圍是全體實(shí)數(shù),xy的幾組對(duì)應(yīng)數(shù)值如下表:

x

-3

-2

-1

0

1

2

3

y

-2

m

2

1

2

1

-2

其中m=____________;

(2)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象

(3)根據(jù)函數(shù)圖象

①寫出該函數(shù)的一條性質(zhì)_______________;

②直線經(jīng)過點(diǎn)(-l,2),若關(guān)于x的方程4個(gè)互不相等的實(shí)數(shù)根,則b的取值范圍是__________________.

【答案】(1)m=1,(2)畫圖像見解析;(3)①函數(shù)的圖象關(guān)于y軸對(duì)稱(答案不唯一)1<b<2.

【解析】

(1)把x=-2代入函數(shù)解釋式即可得m的值;

(2)描點(diǎn)、連線即可得到函數(shù)的圖象;

(3)①根據(jù)函數(shù)圖象得到函數(shù)y=x2-2|x|+1的圖象關(guān)于y軸對(duì)稱;當(dāng)x>1時(shí),yx的增大而減少;

②根據(jù)函數(shù)的圖象即可得到b的取值范圍是1<b<2.

(1)當(dāng)x=-2時(shí),m=-(-2)2+2×|-2|+1=-4+4+1=1.

(2)如圖所示:

(3)①答案不唯一.如:函數(shù)圖象關(guān)于y軸對(duì)稱.

②由函數(shù)圖象知:∵關(guān)于x的方程-x2+2|x|+1=kx+b4個(gè)互不相等的實(shí)數(shù)根,

b的取值范圍是1<b<2.

故答案為:1;函數(shù)圖象關(guān)于y軸對(duì)稱;1<b<2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、C、D重合)。若四邊形OBCD是平行四邊形時(shí),那么的數(shù)量關(guān)系是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表中,yx的一次函數(shù).

x

2

1

2


5

y

6

3


12

15

1)求該函數(shù)的表達(dá)式,并補(bǔ)全表格;

2)已知該函數(shù)圖象上一點(diǎn)M1,-3)也在反比例函數(shù)圖象上,求這兩個(gè)函數(shù)圖象的另一交點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等邊沿翻折得,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)的角度后得到對(duì)應(yīng)的線段(即),于點(diǎn),則下列結(jié)論:①;②;③當(dāng)為線段的中點(diǎn)時(shí),則;④四邊形的面積為;⑤連接、,當(dāng)的長(zhǎng)度最小時(shí),則的面積為.則說法正確的有________(只填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,一次函數(shù)的圖像分別與、軸交于兩點(diǎn),正比例函數(shù)的圖像交于點(diǎn)

1)求的值及的解析式;

2)求的值;

3)在坐標(biāo)軸上找一點(diǎn),使以為腰的為等腰三角形,請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了進(jìn)一步開展陽(yáng)光體育活動(dòng),購(gòu)買了一批乒乓球拍和羽毛球拍,已知一副羽毛球拍比一副乒乓球拍費(fèi)貴20元,購(gòu)買羽毛球拍的費(fèi)用比購(gòu)買乒乓球拍的2000元要多,多出部分能購(gòu)買25副乒乓球拍.

1)若每副乒乓球拍的價(jià)格為x,請(qǐng)你用含x的代數(shù)式表示該校購(gòu)買這批乒乓球拍和羽毛球拍的總費(fèi)用.

2)若購(gòu)買的兩種球拍數(shù)一樣,求x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場(chǎng)學(xué)校積極開展陽(yáng)光體育活動(dòng),組織了九年級(jí)學(xué)生定點(diǎn)投籃,規(guī)定每人投籃3次.現(xiàn)對(duì)九年級(jí)(1)班每名學(xué)生投中的次數(shù)進(jìn)行統(tǒng)計(jì),繪制成如下的兩幅統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,回答下列問題.

(1)求出九年級(jí)(1)班學(xué)生人數(shù);

(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;

(3)求出扇形統(tǒng)計(jì)圖中3次的圓心角的度數(shù);

(4)若九年級(jí)有學(xué)生200人,估計(jì)投中次數(shù)在2次以上(包括2次)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究題

問題背景:如圖1,在中,、三邊的長(zhǎng)分別為,,求的面積.

1)問題解決:小明在計(jì)算這個(gè)三角形面積的時(shí)候,采用了傳統(tǒng)的三角形面積計(jì)算公式的方法計(jì)算,即求出三角形的一條高.如圖2,他過點(diǎn)于點(diǎn),為了求出高的長(zhǎng),他設(shè),則,根據(jù)勾股定理,可列方程:_______________________,該方程解得__________,再根據(jù)股定理求出高的長(zhǎng),從而計(jì)算的面積(注:此小問不用計(jì)算的長(zhǎng)和的面積);

2)思維拓展:小輝同學(xué)在思考這個(gè)問題時(shí),覺得小明的方法在計(jì)算上比較復(fù)雜,他先建立了一個(gè)正方形網(wǎng)格(每個(gè)正方形網(wǎng)格的邊長(zhǎng)是1),再在網(wǎng)格中畫出了格點(diǎn)(即的三個(gè)頂點(diǎn)都在正方形的網(wǎng)格線的交點(diǎn)處),如圖3,這樣就不用求的高,直接借助網(wǎng)格就能計(jì)算的面積為__________(直接寫出的面積即可);

3)方法應(yīng)用:我們將小輝的方法稱為“構(gòu)圖法”,若的三邊長(zhǎng)分別為,,),請(qǐng)?jiān)趫D4的網(wǎng)格中(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為)畫出相應(yīng)的,并求出它的面積;

4)探索創(chuàng)新:若中有兩邊長(zhǎng)為,且的面積為2,請(qǐng)?jiān)趫D5和備用圖的正方形網(wǎng)格中畫出所有可能情況(全等三角形視為同一種情況),則的第三邊長(zhǎng)為______________(直接寫出所有可能的情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以等邊ABC的邊AC為腰作等腰CAD,使AC=AD,連接BD,若∠DBC=41°,∠CAD=________°.

查看答案和解析>>

同步練習(xí)冊(cè)答案