【題目】如圖,在中,點在邊上,,連接交于點,則的面積與四邊形的面積之比為( )
A. 3∶4 B. 9∶16 C. 9∶19 D. 9∶28
【答案】C
【解析】
由DE:EC=3:1,可得DF:FB=3:4,根據(jù)在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.
連接BE
∵DE:EC=3:1
∴設DE=3k,EC=k,則CD=4k
∵ABCD是平行四邊形
∴AB∥CD,AB=CD=4k
∴
∴S△EFD:S△BEF=3:4
∵DE:EC=3:1
∴S△BDE:S△BEC=3:1
設S△BDE=3a,S△BEC=a
則S△EFD=,S△BEF=
∴SBCEF=S△BEC+S△BEF=
∴則△DEF的面積與四邊形BCEF的面積之比9:19
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】某市政部門為了保護生態(tài)環(huán)境,計劃購買A,B兩種型號的環(huán)保設備.已知購買一套A型設備和三套B型設備共需230萬元,購買三套A型設備和兩套B型設備共需340萬元.
(1)求A型設備和B型設備的單價各是多少萬元;
(2)根據(jù)需要市政部門采購A型和B型設備共50套,預算資金不超過3000萬元,問最多可購買A型設備多少套?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,過C作CE⊥AD垂足為E,且∠EDC=∠BDC.
(1)求證:CE是⊙O的切線;
(2)若DE+CE=4,AB=6,求BD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學生甲與乙學習概率初步知識后設計了如下游戲:甲手中有 、、 三張撲克牌,乙手中有 、、 三張撲克牌,每局比賽時,兩人從各自手中隨機取一張牌進行比較,數(shù)字大的則本局獲勝.
(1)若每人隨機取出手中的一張牌進行比較,請列舉出所有情況;
(2)求學生乙一局比賽獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AB為⊙O直徑,BC為⊙O切線,切點為B,CO平行于弦AD,作直線DC.
(1)求證:DC為⊙O切線;
(2) 若AD·OC=8,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知中,cm,cm,cm.點由出發(fā),以5cm/s的速度沿向點勻速運動,同時點由出發(fā),以4cm/s的速度沿向點勻速運動.連接,設運動時間為(單位:,).
(1)求點到的距離(用含代數(shù)式表示);
(2)求為何值時,線段將的面積分成的兩部分的面積比為3∶13;
(3)當為直角三角形時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將矩形ABCD繞點A順時針旋轉(zhuǎn)α(0°<α<360°),得到矩形AEFG.
(1)如圖,當點E在BD上時.求證:FD=CD;
(2)當α為何值時,GC=GB?畫出圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公園要建造一個圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個噴頭向外噴水.連噴頭在內(nèi),柱高0.8m.水流在各個方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.
根據(jù)設計圖紙已知:如圖(2)中所示直角坐標系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關系式是 y=﹣x2+2x+.
(1)噴出的水流距水平面的最大高度是多少?
(2)如果不計其他因素,那么水池半徑至少為多少時,才能使噴出的水流都落在水池內(nèi)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:二次函數(shù)y=x2+bx+c 的圖象與x軸交于A,B兩點,其中A點坐標為(-3,0),與 y 軸交于點 C(0,-3)在拋物線上.
(1)求拋物線的表達式;
(2)拋物線的對稱軸上有一動點 P,求出當 PB+PC 最小時點 P的坐標;
(3)若拋物線上有一動點Q,使△ABQ的面積為6,求Q點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com