【題目】規(guī)定:不相交的兩個函數圖象在豎直方向上的最短距離為這兩個函數的“親近距離”
(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;
(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.
(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.
【答案】(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.
【解析】
(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據題意解決問題;
(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數的性質得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進行判斷;
(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.
(1)∵y=x2﹣2x+3=(x﹣1)2+2,
∴拋物線上的點到x軸的最短距離為2,
∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;
(2)不同意他的看法.理由如下:
如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,
設P(t,t2﹣2t+3),則Q(t,t﹣1),
∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,
當t=時,PQ有最小值,最小值為,
∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,
而過拋物線的頂點向x軸作垂線與直線相交,拋物線頂點與交點之間的距離為2,
∴不同意他的看法;
(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,
設M(t,t2﹣2t+3),則N(t,t2+c),
∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,
當t=時,MN有最小值,最小值為﹣c,
∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,
∴,
∴c=1.
科目:初中數學 來源: 題型:
【題目】一家蔬菜公司計劃到某綠色蔬菜基地收購A,B兩種蔬菜共140噸,預計兩種蔬菜銷售后獲利的情況如下表所示:
銷售品種 | A種蔬菜 | B種蔬菜 |
每噸獲利(元) | 1200 | 1000 |
其中A種蔬菜的5%,B種蔬菜的3%須運往C市場銷售,但C市場的銷售總量不超過5.8噸.設銷售利潤為W元(不計損耗),購進A種蔬菜x噸.
(1)求W與x之間的函數關系式;
(2)將這140噸蔬菜全部銷售完,最多可獲得多少利潤?
(3)由于受市場因素影響,公司進貨時調查發(fā)現,A種蔬菜每噸可多獲利100元,B種蔬菜每噸可多獲利m(200<m<400)元,但B種蔬菜銷售數量不超過90噸.公司設計了一種獲利最大的進貨方案,銷售完后可獲利179000元,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A,B是反比例函數y=在第一象限內的圖象上的兩點,且A,B兩點的橫坐標分別是2和4,則△OAB的面積是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】教育部布的《基礎教育課程改革綱要》要求每位學生每學年都要參加社會實踐活動,某學校組織了一次測量探究活動,如圖,某大樓的頂部豎有一塊廣告牌CD,小明與同學們在山坡的坡腳A處測得廣告牌底部D的仰角為53°,沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度1:,AB=10米,AE=21米,求廣告牌CD的高度.(測角器的高度忽略不計,結果精確到0.1米,參考數據:≈1.41,≈1.73,tan53°≈,cos53°≈0.60)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖四邊形OACB是菱形,OB在X軸的正半軸上,sin∠AOB=.反比例函數y=在第一象限圖象經過點A,與BC交于點F.S△AOF=,則k=( 。
A. 15 B. 13 C. 12 D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC 是等邊三角形,點 D、E 分別在 BC、AC 上,且 BD=BC,CE= AC,BE、AD 相交于點 F,連接 DE, 則下列結論:①∠AFE=60°;②DE⊥AC;③CE2=DFDA;④AFBE=AEAC,正確的結論有( )
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角坐標系中y=mx和(m>0)圖象的交點為A、B,BD⊥y軸于D,S△ABD=4;直線A′B′由直線AB緩慢向下平移;
(1)求m的值;
(2)問直線A′B′向下平移多少單位時與經過B、D、A三點的拋物線剛好只有一個交點,并求出交點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著互聯網的不斷發(fā)展,移動支付的普及率越來越高,人們在購物時可選擇的付款方式越來越多樣化.為了解人們購物時常用付款方式,在某步行街進行了隨機抽樣調查,根據調查結果繪制以下兩幅不完整統(tǒng)計圖,請結合圖中所給信息解答下列問題:
(1)此次共調查了 人,表示常用“微信”付款方式的扇形圓心角度數為 ,并補全條形統(tǒng)計圖.
(2)該步行街某天的人流量約為2.4萬人,其中約有50%的人參與購物,根據調查獲得的信息,估計在這一天購物時用“微信”付款方式的人數為多少萬人?
(3)若甲、乙兩人在購物時,選擇“現金”、“刷卡”、“支付寶”、“微信”(分別用A、B、C、D表示)付款的可能性相同.請通過列表或畫樹形圖的方法,求兩人在購物時,用同一種付款方式的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com