精英家教網 > 初中數學 > 題目詳情
有一個面積為16cm2的梯形,它的一條底邊長為3cm,另一條底邊比它的高線長1cm.若設這條底邊長為xcm,依據題意,列出方程整理后得( )
A.x2+2x-35=0
B.x2+2x-70=0
C.x2-2x-35=0
D.x2-2x+70=0
【答案】分析:如果設這條底邊長為xcm,那么高線就應該為(x-1)cm,根據梯形的面積公式即可列出方程.
解答:解:設這條底邊長為xcm,
那么高線就應該為(x-1)cm,
根據梯形的面積公式得(x+3)(x-1)÷2=16,
化簡后得x2+2x-35=0.
故選A.
點評:此題要利用梯形的面積=(上底+下底)×高÷2,主要根據梯形的面積公式列出方程.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

10、用16cm長的鐵絲彎成一個矩形,用長18cm長的鐵絲彎成一個有一邊長為5cm的等腰三角形,如果矩形的面積與等腰三角形的面積相等,則矩形的邊長為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•和平區(qū)二模)把一張長為20cm,寬為16cm的矩形硬紙板的四周各剪去一個同樣大小的正方形(如圖1),再折疊成一個無蓋的長方體盒子(紙板的厚度忽略不計,如圖2).設剪去的正方形邊長為x(cm),x為正整數.折成的長方體盒子底面積為y(cm2).
(1)求y與x之間的函數關系式;
(2)折疊成的長方體盒子底面積是否有最大值?若有,請求出最大值,若沒有,說明理由;
(3)你認為折疊成的無蓋長方體盒子的側面積有可能是192cm2嗎?若能,請求出此時x的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

有一個長為16cm,寬為4cm的長方形和一個邊長為6cm的正方形,要作一個面積為這兩個圖形的面積之和的大正方形,則該大正方形的邊長應為多少厘米?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

把一張長為20cm,寬為16cm的矩形硬紙板的四周各剪去一個同樣大小的正方形(如圖1),再折疊成一個無蓋的長方體盒子(紙板的厚度忽略不計,如圖2).設剪去的正方形邊長為x(cm),x為正整數.折成的長方體盒子底面積為y(cm2).
(1)求y與x之間的函數關系式;
(2)折疊成的長方體盒子底面積是否有最大值?若有,請求出最大值,若沒有,說明理由;
(3)你認為折疊成的無蓋長方體盒子的側面積有可能是192cm2嗎?若能,請求出此時x的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

有一個長為16cm,寬為4cm的長方形和一個邊長為6cm的正方形,要作一個面積為這兩個圖形的面積之和的大正方形,則該大正方形的邊長應為多少厘米?

查看答案和解析>>

同步練習冊答案