已知:如圖,⊙O與⊙P相交于A、B兩點,點P在⊙O上,⊙O的弦AC切⊙P于點A,CP及其延長線交⊙P于D、E,過點E作EF⊥CE交CB的延長線于F.
(1)求證:BC是⊙P的切線;
(2)若CD=2,CB=2
2
,求EF的長.
分析:(1)連接PA,PB,根據(jù)圓內接四邊形對角互補證明∠PBC是直角,從而可以確定CB是⊙P的切線;
(2)根據(jù)△FCE∽△PCB,則
CB
CE
=
BP
EF
,由于CB是⊙P的切線,所以根據(jù)CB2=CD•(CD+DE),可以求得DE的長度,進而求得CE的長度;再求得BP的長度即可,在Rt△CPB中,CP=3,CB=2,則可求得EF的長度.
解答:解:(1)連接PB,PA,
∵點P在⊙O上,
∵⊙O的弦AC切⊙P于點A,
∴∠CAP=90°,
∵四邊形APBC是⊙O的內接四邊形,
∴∠PBC=90°,即PB⊥CB.
∵B在⊙P上,
∴CB是⊙P的切線.

(2)∵CB是⊙P的切線,
∴CB2=CD•(CD+DE).
∵CD=2,CB=2
2
,
∴(2
2
)2═2×(2+ED).
∴DE=2.
∴CE=CD+DE=2+2=4.
∴在⊙P中,PD=PE=
1
2
ED=1,
∵CP=3,CB=2
2
,
∴BP=1.
∵EF⊥CE,
∴∠FEC=∠CBP=90°,∠FCE=∠PCB.
∴△FCE∽△PCB.
CB
CE
=
BP
EF
,
∵CB=2
2
,CE=4,BP=1,
2
2
4
=
1
EF
,
∴EF=
2
點評:本題考查的是相交兩圓的性質、切線的判定和切線的性質以及相似三角形的判定和相似三角形的性質,題目的綜合性不小,屬于中檔題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、已知:如圖,⊙O1與⊙O2相交于A、B兩點,過A的直線交⊙O1于C,交⊙O2于D,過B的直線交⊙O1于E,交⊙O2于F,且CD∥EF.
求證:CE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,⊙O1與⊙O2相交于點A和點B,AC∥O1O2,交⊙O1于點C,⊙O1的半徑為5精英家教網(wǎng),⊙O2的半徑為
13
,AB=6.
求:(1)弦AC的長度;
(2)四邊形ACO1O2的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、已知:如圖,⊙O1與⊙O2外切于點P,⊙O1的半徑為3,且O1O2=8,則⊙O2的半徑R=
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•南京)已知:如圖,⊙O1與⊙O2外切于點P,A為⊙O1上一點,直線AC切⊙O2于點C,且交⊙O1于點B,AP的延長線交⊙O2于點D.
(1)求證:∠BPC=∠CPD;
(2)若⊙O1半徑是⊙O2半徑的2倍,PD=10,AB=7
6
,求PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,⊙O1與⊙O2相交于A,B兩點.求證:直線O1O2垂直平分AB.

查看答案和解析>>

同步練習冊答案