【題目】如圖,直線y= 與y軸交于點A,與直線y=﹣ 交于點B,以AB為邊向右作菱形ABCD,點C恰與原點O重合,拋物線y=(x﹣h)2+k的頂點在直線y=﹣ 上移動.若拋物線與菱形的邊AB、BC都有公共點,則h的取值范圍是( )
A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1
【答案】A
【解析】解:∵將y= 與y=﹣ 聯(lián)立得: ,解得: .
∴點B的坐標(biāo)為(﹣2,1).
由拋物線的解析式可知拋物線的頂點坐標(biāo)為(h,k).
∵將x=h,y=k,代入得y=﹣ 得:﹣ h=k,解得k=﹣ ,
∴拋物線的解析式為y=(x﹣h)2﹣ h.
如圖1所示:當(dāng)拋物線經(jīng)過點C時.
將C(0,0)代入y=(x﹣h)2﹣ h得:h2﹣ h=0,解得:h1=0(舍去),h2= .
如圖2所示:當(dāng)拋物線經(jīng)過點B時.
將B(﹣2,1)代入y=(x﹣h)2﹣ h得:(﹣2﹣h)2﹣ h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣ (舍去).
綜上所述,h的范圍是﹣2≤h≤ .
故選A.
將y= 與y=﹣ 聯(lián)立可求得點B的坐標(biāo),然后由拋物線的頂點在直線y=﹣ 可求得k=﹣ ,于是可得到拋物線的解析式為y=(x﹣h)2﹣ h,由圖形可知當(dāng)拋物線經(jīng)過點B和點C時拋物線與菱形的邊AB、BC均有交點,然后將點C和點B的坐標(biāo)代入拋物線的解析式可求得h的值,從而可判斷出h的取值范圍.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在 中,以 為直徑的⊙O,交 于點 ,且 ,交線段 的延長線于點 ,連接 ,過點 作 于點 .
(Ⅰ)求證: ;
(Ⅱ)在 的內(nèi)部作 ,使 , 分別交于 、 于點 、 ,交⊙O于點 ,若 ,求 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點繞點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.①如圖2,當(dāng)△ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD=BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為 .
(2)在圖1中,當(dāng)△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2 ,DA=6.在四邊形內(nèi)部是否存在點P,使△PDC是△PAB的“旋補三角形”?若存在,給予證明,并求△PAB的“旋補中線”長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形紙片ABC中,∠A=90°,∠C=30°,AC=30cm,將該紙片沿過點B的直線折疊,使點A落在斜邊BC上的一點E處,折痕記為BD(如圖1),減去△CDE后得到雙層△BDE(如圖2),再沿著過△BDE某頂點的直線將雙層三角形剪開,使得展開后的平面圖形中有一個是平行四邊形,則所得平行四邊形的周長為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位運動員在相同條件下各射靶10次,每次射靶的成績?nèi)缦拢?/span>
甲:9,10,8,5,7,8,10,8,8,7
乙:5,7,8,7,8,9,7,9,10,10
丙:7,6,8,5,4,7,6,3,9,5
(1)根據(jù)以上數(shù)據(jù)完成下表:
平均數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | 8 | |
乙 | 8 | 8 | 2.2 |
丙 | 6 | 3 |
(2)根據(jù)表中數(shù)據(jù)分析,哪位運動員的成績最穩(wěn)定,并簡要說明理由;
(3)比賽時三人依次出場,順序由抽簽方式?jīng)Q定,求甲、乙相鄰出場的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知雙曲線y= (k>0)與直線y=k′x交于A、B兩點,點A在第一象限,試回答下列問題:
(1)若點A的坐標(biāo)為(3,1),則點B的坐標(biāo)為;當(dāng)x滿足:時, ≤k′x;
(2)如圖2,過原點O作另一條直線l,交雙曲線y= (k>0)于P,Q兩點,點P在第一象限.
四邊形APBQ一定是;
(3)若點A的坐標(biāo)為(3,1),點P的橫坐標(biāo)為1,求四邊形APBQ的面積.
(4)設(shè)點A,P的橫坐標(biāo)分別為m,n,四邊形APBQ可能是矩形嗎?可能是正方形嗎?若可能,直接寫出m,n應(yīng)滿足的條件;若不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知CA=CB=5,BA=6,點E是線段AB上的動點(不與端點重合),點F是線段AC上的動點,連接CE、EF,若在點E、點F的運動過程中,始終保證∠CEF=∠B.
(1)求證:∠AEF=∠BCE;
(2)當(dāng)以點C為圓心,以CF為半徑的圓與AB相切時,求BE的長;
(3)探究:在點E、F的運動過程中,△CEF可能為等腰三角形嗎?若能,求出BE的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“世界那么大,我想去看看”一句話紅遍網(wǎng)絡(luò),騎自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場.順風(fēng)車行經(jīng)營的A型車2015年6月份銷售總額為3.2萬元,今年經(jīng)過改造升級后A型車每輛銷售價比去年增加400元,若今年6月份與去年6月份賣出的A型車數(shù)量相同,則今年6月份A型車銷售總額將比去年6月份銷售總額增加25%.
(1)求今年6月份A型車每輛銷售價多少元(用列方程的方法解答);
(2)該車行計劃7月份新進(jìn)一批A型車和B型車共50輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多? A、B兩種型號車的進(jìn)貨和銷售價格如表:
A型車 | B型車 | |
進(jìn)貨價格(元/輛) | 1100 | 1400 |
銷售價格(元/輛) | 今年的銷售價格 | 2400 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個60°角的三角形紙片,剪去這個60°角后,得到一個四邊形,則∠1+∠2的度數(shù)為( )
A.120°
B.180°
C.240°
D.300°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com