【題目】如圖,直角三角形ABC與直角三角形BDE中,點B,C,D在同一條直線上,已知AC=AE=CD,∠BAC和∠ACB的角平分線交于點F,連DF,EF,分別交AB、BC于M、N,已知點F到△ABC三邊距離為3,則△BMN的周長為____________.
【答案】6
【解析】
由角平分線和三角形的內角和定理可得∠AFC=135°,由△AFC≌△DFC可得∠DFC=∠AFC=135°,可得∠AFD=90°.同理可得∠CFE=90°,可求得∠MFN=45°,過點F作FP⊥AB于點P,FQ⊥BC于點Q,由正方形的半角模型可得MN=MP+NQ,由此即可得出答案.
解:過點F作FP⊥AB于點P,FQ⊥BC于點Q,過點F作FG⊥FM,交BC于點G.
∵點F是∠BAC和∠BCA的角平分線交點,
∴FP=FQ=3,
∵∠ABC=90°,
∴四邊形BPFQ是正方形,
∴BP=BQ=3.
在Rt△ABC中,∠BAC+∠BCA=90°,
∵AF、CF是角平分線,
∴∠FAC+∠FCA=45°,
∴∠AFC=180°-45°=135°.
易證△AFC≌△DFC(SAS),
∴∠AFC=∠DFC=135°,
∴∠ADF=90°,
同理可得∠EFC=90°,
∴∠MFN=360°-90°-90°-135°=45°.
∵∠PFM+∠MFN=90°,∠MFN+∠QFG=90°,
∴∠PMF=∠QFG,
∵∠FPM=∠FQG=90°,FP=FQ,
∴△FPM≌△FQG(ASA),
∴PM=QG,FM=FG.
在△FMN和△FGN中
∴△FMN≌△FGN(SAS),
∴MN=NG,
∴MN=NG=NQ+QG=PM+QN,
∴△BMN的周長為:
BM+BN+MN
= BM+BN+ PM+QN
=BP+BQ
=3+3
=6.
故答案為:6.
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,每個小正方形的邊長為1個單位長度.平面直角坐標系xOy的原點O在格點上,x軸、y軸都在格線上.線段AB的兩個端點也在格點上.
(1)若將線段AB繞點O逆時針旋轉90°得到線段A1B1,試在圖中畫出線段A1B1.
(2)若線段A2B2與線段A1B1關于y軸對稱,請畫出線段A2B2.
(3)若點P是此平面直角坐標系內的一點,當點A、B1、B2、P四邊圍成的四邊形為平行四邊形時,請你直接寫出點P的坐標(寫出一個即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設a,b是任意兩個不等實數,我們規(guī)定:滿足不等式a≤x≤b的實數x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數,如果它的自變量x與函數值y滿足:當m≤x≤n時,有m≤y≤n,我們就稱此函數是閉區(qū)間[m,n]上的“閉函數”.如函數y=﹣x+4,當x=1時,y=3;當x=3時,y=1,即當1≤x≤3時,恒有1≤y≤3,所以說函數y=﹣x+4是閉區(qū)間[1,3]上的“閉函數”,同理函數y=x也是閉區(qū)間[1,3]上的“閉函數”.
(1)反比例函數y=是閉區(qū)間[1,2018]上的“閉函數”嗎?請判斷并說明理由;
(2)如果已知二次函數y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數”,求k和t的值;
(3)如果(2)所述的二次函數的圖象交y軸于C點,A為此二次函數圖象的頂點,B為直線x=1上的一點,當△ABC為直角三角形時,寫出點B的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】邊長為1的正方形OABC的頂點A在X軸的正半軸上,如圖將正方形OABC繞頂點O順時針旋轉75°得正方形OABC,使點B恰好落在函數y=ax2(a<0)的圖像上,
則a的值為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC,BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=3,BC=6.求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,∠AOB=30°,點M為射線OB上一點,平面內有一點P使∠PAM=150°且PA=AM.
(1)求證:∠OMA=∠OAP.
(2)如圖2,若射線OB上有一點Q使∠POA=∠AQO,求證:OP=AQ.
(3)如圖3,在(2)的條件下,過A作AH⊥OB,且OH=AH,已知N點為MQ的中點,且ON=,則OA=____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D在AB上,點E在AC上,BE、CD相交于點O.
(1)三角形的外角等于與它不相鄰的兩個內角的______,若∠A=45°,∠B=30°,則∠BEC=______;
(2)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度數;
(3)試猜想∠BOC與∠A、∠B、∠C之間的關系,并證明你猜想的正確性。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】仔細閱讀下面材料,然后解決問題:在分式中,對于只含有一個字母的分式,當分子的次數大于或等于分母的次數時,我們稱之為“假分式”.例如:,;當分子的次數小于分母的次數時,我們稱之為“真分式”,例如:,.我們知道,假分數可以化為帶分數,例如:=2+=2,類似的,假分式也可以化為“帶分式”(整式與真分式和的形式),例如:=1+.
(1)將分式化為帶分式;
(2)當x取哪些整數值時,分式的值也是整數?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com