【題目】如圖,△ABC中,BO,CO分別是∠ABC,∠ACB的平分線,∠A=50°,則∠BOC等于( )
A.110°
B.115°
C.120°
D.130°
【答案】B
【解析】解:∵∠A=50°, ∴∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,
∵BO,CO分別是∠ABC,∠ACB的平分線,
∴∠OBC= ∠ABC,∠OCB= ∠ACB,
∴∠OBC+∠OCB= (∠ABC+∠ACB)= ×130°=65°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.
故選B.
【考點精析】關(guān)于本題考查的角的平分線和三角形的內(nèi)角和外角,需要了解從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖1,若AB∥CD,點P在AB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.將點P移到AB、CD內(nèi)部,如圖2,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請證明你的結(jié)論;
(2)在如圖2中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖3,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?(不需證明);
(3)根據(jù)(2)的結(jié)論求如圖4中∠A+∠B+∠C+∠D+∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.以輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.
(1)若輪船照此速度與航向航向,何時到達海岸線?
(2)若輪船不改變航向,該輪船能否停靠在碼頭?請說明理由.(參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷中正確的是( )
A.對角線互相垂直的四邊形是菱形
B.三個角相等的四邊形是矩形
C.對角線相等的平行四邊形是正方形
D.對角線互相平分垂直且相等的四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲數(shù)為a×10n , 乙數(shù)是甲數(shù)的10倍,丙數(shù)是乙數(shù)的2倍,甲、乙、丙三數(shù)的積為1.6×1012 , 求a,n的值.(其中1≤a≤10,n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組中的四條線段成比例的是( )
A.1cm,2cm,20cm,40cmB.1cm,2cm,3cm,4cm
C.4cm,2cm,1cm,3cmD.5cm,10cm,15cm,20cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校將周五上午大課間活動項目定為跳繩活動,為此學(xué)校準備購置長、短兩種跳繩若干.已知長跳繩的單價比短跳繩單價的三倍少4元,且購買2條長跳繩與購買5條短跳繩的費用相同.
(1)兩種跳繩的單價各是多少元?
(2)若學(xué)校準備用不超過1950元的現(xiàn)金購買190條長、短跳繩,且短跳繩的條數(shù)不超過長跳繩的5倍,問學(xué)校有幾種購買方案可供選擇?并寫出這幾種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明到離家2.1千米的學(xué)校參加初三聯(lián)歡會,到學(xué)校時發(fā)現(xiàn)演出道具還放在家中,此時距聯(lián)歡會開始還有42分鐘,于是他立即勻速步行回家,在家拿道具用了1分鐘,然后立即勻速騎自行車返回學(xué)校.已知李明騎自行車到學(xué)校比他從學(xué)校步行到家用時少20分鐘,且騎自行車的速度是步行速度的3倍.
(1)李明步行的速度(單位:米/分)是多少?
(2)李明能否在聯(lián)歡會開始前趕到學(xué)校?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com