【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖1,若AB∥CD,點P在AB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.將點P移到AB、CD內(nèi)部,如圖2,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請證明你的結(jié)論;


(2)在如圖2中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖3,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?(不需證明);

(3)根據(jù)(2)的結(jié)論求如圖4中∠A+∠B+∠C+∠D+∠E的度數(shù).

【答案】
(1)解:不成立,結(jié)論是∠BPD=∠B+∠D.

延長BP交CD于點E,

∵AB∥CD,

∴∠B=∠BED,

又∵∠BPD=∠BED+∠D,

∴∠BPD=∠B+∠D;


(2)解:結(jié)論:∠BPD=∠BQD+∠B+∠D.

連接QP并延長,

∵∠BPE是△BPQ的外角,∠DPE是△PDQ的外角,

∴∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQP,

∴∠BPE+∠DPE=∠B+∠D+∠BQE+∠DQP,即∠BPD=∠BQD+∠B+∠D;


(3)解:由(2)的結(jié)論得:∠AFG=∠B+∠E.∠AGF=∠C+∠D.

又∵∠A+∠AFG+∠AGF=180°

∴∠A+∠B+∠C+∠D+∠E=180°.

(或由(2)的結(jié)論得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,

∴∠A+∠B+∠C+∠D+∠E=180°.


【解析】本題主要考查了平行線性質(zhì),三角形外角性質(zhì),四邊形的內(nèi)角和定理等知識點的應用,根據(jù)三角形外交性質(zhì)均可得出答案.

【考點精析】根據(jù)題目的已知條件,利用平行線的性質(zhì)和三角形的內(nèi)角和外角的相關(guān)知識可以得到問題的答案,需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總?cè)丝趚(單位:人)的函數(shù)圖象如圖所示,則下列說法正確的是(
A.該村人均耕地面積隨總?cè)丝诘脑龆喽龆?/span>
B.當該村總?cè)丝跒?0人時,人均耕地面積為1公頃
C.若該村人均耕地面積為2公頃,則總?cè)丝谟?00人
D.該村人均耕地面積y與總?cè)丝趚成正比例

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(
A.帶①去
B.帶②去
C.帶③去
D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是BC的中點,AB⊥BC,DC⊥BC,AE平分∠BAD,下列結(jié)論:
①∠AED=90° ②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,
四個結(jié)論中成立的是( )

A.①②④
B.①②③
C.②③④
D.①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=3,點D在邊AC上,且AD=2CD,DE⊥AB,垂足為點E,聯(lián)結(jié)CE,求:

(1)線段BE的長;

(2)∠ECB的余切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把兩個含有45°角的直角三角板如圖放置,點D在AC上,連接AE、BD,試判斷AE與BD的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知平行四邊形ABCD的頂點A在第三象限,對角線AC的中點在坐標原點,一邊AB與x軸平行且AB=2,若點A的坐標為(a,b),則點D的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,線段BE上有一點C,以BC,CE為邊分別在BE的同側(cè)作等邊三角形ABC,DCE,連接AE,BD,分別交CD,CA于Q,P.

(1)找出圖中的所有全等三角形.
(2)找出一組相等的線段,并說明理由.
(3)如圖2,取AE的中點M、BD的中點N,連接MN,試判斷三角形CMN的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,BO,CO分別是∠ABC,∠ACB的平分線,∠A=50°,則∠BOC等于(
A.110°
B.115°
C.120°
D.130°

查看答案和解析>>

同步練習冊答案