【題目】我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)時,發(fā)現直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式是能用乘法公式計算.
即:原式=(2-1) (2+1)(22+1)(24+1)(28+1)(216+1)=232-1.
請用上述方法算出(5+1) (52+1)(54+1)(58+1)(516+1) (532+1)的值為_________.
科目:初中數學 來源: 題型:
【題目】請將下列證明過程補充完整:
已知:如圖,點P在CD上,已知∠BAP+∠APD=180°,∠1=∠2
求證:∠E=∠F
證明:∵∠BAP+∠APD=180°(已知)
∴ ∥ ( )
∴∠BAP= ( )
又∵∠1=∠2(已知)
∴∠BAP﹣ = ﹣∠2
即∠3= (等式的性質)
∴AE∥PF( )
∴∠E=∠F( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列事件中,是不可能事件的是
A.買一張電影票,座位號是奇數 B.射擊運動員射擊一次,命中9環(huán)
C.明天會下雨 D.度量三角形的內角和,結果是360°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明、小亮、小芳和兩個陌生人甲、乙同在如圖所示的地下車庫等電梯,已知兩個陌生人到1至4層的任意一層出電梯,并設甲在a層出電梯,乙在b層出電梯.
(1)請你用畫樹狀圖或列表法求出甲、乙二人在同一層樓出電梯的概率;
(2)小亮和小芳打賭說:“若甲、乙在同一層或相鄰樓層出電梯,則小亮勝,否則小芳勝”.該游戲是否公平?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電器商場銷售A、B兩種型號計算器,兩種計算器的進貨價格分別為每臺30元、40元. 商場銷售5臺A型號和1臺B型號計算器,可獲利潤76元;銷售6臺A型號和3臺B型號計算器,可獲利潤120元.
(1)求商場銷售A、B兩種型號計算器的銷售價格分別是多少元?(利潤=銷售價格﹣進貨價格)
(2)商場準備用不多于2500元的資金購進A、B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為( )
A.
B.2
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com