【題目】ABC 中,AB BC AC,A B C 60°點(diǎn) D、E 分別是邊 AC、AB 上的點(diǎn)(不與 A、B、C 重合),點(diǎn) P 是平面內(nèi)一動(dòng)點(diǎn)設(shè)∠PDC=1,∠PEB=2,∠DPE=α

1)若點(diǎn) P 在邊 BC 上運(yùn)動(dòng)(不與點(diǎn) B 和點(diǎn) C 重合),如圖⑴所示,則∠1+2 (用 α 的代數(shù)式表示)

2)若點(diǎn) P ABC 的外部,如圖⑵所示,則∠α、∠1、∠2 之間有何關(guān)系?寫出你的結(jié)論,并說明理由

3)當(dāng)點(diǎn) P 在邊 BC 的延長線上運(yùn)動(dòng)時(shí),試畫出相應(yīng)圖形,并寫出∠α、∠1、∠2 之間的關(guān)系式(不需要證明)

【答案】(1)如圖(1)60 α ;(2)∠2=60 1 α;理由見解析;(3)如圖(3)時(shí),2 1 60 α,如圖(4)時(shí),∠2 1=60 α.

【解析】

1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義得出∠1+2=C+α,進(jìn)而得出即可;

2)利用三角形內(nèi)角和定理以及鄰補(bǔ)角的性質(zhì)可得出∠α=1-2+60°;

3)利用三角外角的性質(zhì)得出.需要分類討論,如圖所示.

1)如圖(1),∵∠1+2+ADP+AEP=360°,∠A+α+ADP+AEP=360°,

∴∠1+2=A+α

∵△ABC是等邊三角形,

∴∠A=60°

∴∠1+2=60°+α

故答案是:60°+α;

2)∠2=60 1 α

證明:如圖(2),

1 是△POD 的外角,

∴∠1=α+POD,

∵∠POD=AOE

∴∠1=α+AOE,

∴∠AOE=1

∵∠2 是△AOE 的外角,

∴∠2=A AOE

∴∠2=60 1 α;

3)兩種情況如下:

如圖(3)時(shí),2 1 60 α,

如圖(4)時(shí),∠2 1=60 α.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩座城市相距100千米,現(xiàn)計(jì)劃在兩城市間修筑一條高速公路(即線段AB).經(jīng)測量,森林保護(hù)區(qū)中心P點(diǎn)既在A城市的北偏東30°的方向上,又在B城市的南偏東45°的方向上.已知森林保護(hù)區(qū)的范圍是以P為圓心,35千米為半徑的圓形區(qū)域內(nèi).請問:計(jì)劃修筑的這條高速公路會不會穿越森林保護(hù)區(qū)?請通過計(jì)算說明.(參考數(shù)據(jù): ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

112016 + 3.14 π 0

2 3a2 3 2a a5

3 x 2 x 1 3xx 1

42a b c2a b c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)【問題提出】如圖1.△ABC是等邊三角形,點(diǎn)D在線段AB上.點(diǎn)E在直線BC上.且∠DEC=∠DCE.求證:BE=AD;

(2)【類比學(xué)習(xí)】如圖2.將條件“點(diǎn)D在線段AB上”改為“點(diǎn)D在線段AB的延長線上”,其他條件不變.判斷線段AB,BE,BD之間的數(shù)量關(guān)系,并說明理由.

(3)【擴(kuò)展探究】如圖3.△ABC是等腰三角形,AB=AC,∠BAC=120°,點(diǎn)D在線段AB的反向延長線上,點(diǎn)E在直線BC上,且∠DEC=∠DCE,【類比學(xué)習(xí)】中的線段AB、BE、BD之間的數(shù)量關(guān)系是否還成立?若成立,請說明理由;若不成立,請直接寫出線段AB,BE,BD之間的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1 是一個(gè)長為 4a、寬為 b 的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個(gè)回形正方形(如圖 2).

1)圖 2 中的陰影部分的面積為 ;(用 ab 的代數(shù)式表示)

2)觀察圖 2 請你寫出a b2 、a b2 、ab 之間的等量關(guān)系是 ;

3)根據(jù)⑵中的結(jié)論,若 x y 5 , x y ,則 x y2 =_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】看圖填空:已知如圖,AD⊥BCD,EG⊥BCG,∠E=∠1,

求證:AD平分∠BAC.

證明:∵AD⊥BCD,EG⊥BCG( 已知

∴∠ADC=90°,∠EGC=90°___________

∴∠ADC=∠EGC(等量代換

∴AD∥EG_____________

∴∠1=∠2___________

∠E=∠3___________

∵∠E=∠1( 已知

∴∠2=∠3___________

∴AD平分∠BAC___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五一勞動(dòng)節(jié)大酬賓!”,某商場設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購物券,購物券可以在本商場消費(fèi).某顧客剛好消費(fèi)300元.
(1)該顧客至多可得到元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)D是△ABC所在平面內(nèi)一點(diǎn),連接AD、CD

(1)如圖1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;

(2)如圖2,若存在一點(diǎn)P,使得PB平分∠ABC,同時(shí)PD平分∠ADC,探究∠A,∠P,∠C的關(guān)系并證明;

(3)如圖3,在 (2)的條件下,將點(diǎn)D移至∠ABC的外部,其它條件不變,探究∠A,∠P,∠C的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC=100°,∠ABC=∠ACB,點(diǎn)D在直線BC上運(yùn)動(dòng)(不與點(diǎn)BC重合),點(diǎn)E在射線AC上運(yùn)動(dòng),且∠ADE=∠AED,設(shè)∠DAC=n

(1)如圖(1),當(dāng)點(diǎn)D在邊BC上時(shí),且n=36°,則∠BAD= _________,∠CDE= _________.

(2)如圖(2),當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí),其他條件不變,請猜想∠BAD和∠CDE的數(shù)量關(guān)系,并說明理由.

(3)當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)C的右側(cè)時(shí),其他條件不變,∠BAD和∠CDE還滿足(2)中的數(shù)量關(guān)系嗎?請畫出圖形,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案