【題目】某商場(chǎng)有一個(gè)可以自由轉(zhuǎn)動(dòng)的圓形轉(zhuǎn)盤(如圖).規(guī)定:顧客購物100元以上可以獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一個(gè)區(qū)域就獲得相應(yīng)的獎(jiǎng)品(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n

100

150

200

500

800

1000

落在鉛筆的次數(shù)m

68

111

136

345

546

701

落在鉛筆的頻率

(結(jié)果保留小數(shù)點(diǎn)后兩位)

0.68

0.74

0.68

0.69

0.68

0.70

1)轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,獲得鉛筆的概率約為_______;(結(jié)果保留小數(shù)點(diǎn)后一位)

2)鉛筆每只0.5元,飲料每瓶3元,經(jīng)統(tǒng)計(jì)該商場(chǎng)每天約有4000名顧客參加抽獎(jiǎng)活動(dòng),請(qǐng)計(jì)算該商場(chǎng)每天需要支出的獎(jiǎng)品費(fèi)用;

3)在(2)的條件下,該商場(chǎng)想把每天支出的獎(jiǎng)品費(fèi)用控制在3000元左右,則轉(zhuǎn)盤上“一瓶飲料”區(qū)域的圓心角應(yīng)調(diào)整為______度.

【答案】(1)0.7;(2)該商場(chǎng)每天大致需要支出的獎(jiǎng)品費(fèi)用為5000元;(3)36

【解析】

(1)利用頻率估計(jì)概率求解;
(2)利用(1)得到獲得鉛筆的概率為0.7和獲得飲料的概率為0.3,然后計(jì)算4000×0.5×0.7+4000×3×0.3即可;
(3)設(shè)轉(zhuǎn)盤上“一瓶飲料”區(qū)域的圓心角應(yīng)調(diào)整為n度,則4000×3×+4000×0.5(1-)=3000,然后解方程即可.

(1)轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,獲得鉛筆的概率約為0.7;

故答案為: 0.7

(2)4000×0.5×0.7+4000×3×0.3=5000,

所以該商場(chǎng)每天大致需要支出的獎(jiǎng)品費(fèi)用為5000元;

(3)設(shè)轉(zhuǎn)盤上一瓶飲料區(qū)域的圓心角應(yīng)調(diào)整為n度,

4000×3×+4000×0.5(1﹣)=3000,解得n=36,

所以轉(zhuǎn)盤上一瓶飲料區(qū)域的圓心角應(yīng)調(diào)整為36度.

故答案為36.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時(shí),小球的飛行路線是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系h20t5t2

1)求小球飛行3s時(shí)的高度;

2)問:小球的飛行高度能否達(dá)到22m?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用小立方體搭一個(gè)幾何體,使它的主視圖和俯視圖如圖所示,俯視圖中小正方形中字母表示在該位置小立方體的個(gè)數(shù),請(qǐng)解答下列問題:

(1)求的值;

(2)這個(gè)幾何體最少有幾個(gè)小立方體搭成,最多有幾個(gè)小立方體搭成;

(3)當(dāng)時(shí)畫出這個(gè)幾何體的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家八縱八橫高鐵網(wǎng)絡(luò)規(guī)劃中京昆通道的重要組成部分──西成高鐵于2017126日開通運(yùn)營,西安至成都列車運(yùn)行時(shí)間由14小時(shí)縮短為3.5小時(shí).張明和王強(qiáng)相約從成都坐高鐵到西安旅游.如圖,張明家(記作A)在成都東站(記作B)南偏西30°的方向且相距4000米,王強(qiáng)家(記作C)在成都東站南偏東60°的方向且相距3000米,則張明家與王強(qiáng)家的距離為( 。

A. 6000 B. 5000 C. 4000 D. 2000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A﹣10)、C03),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB為⊙O直徑,BC為⊙O切線,切點(diǎn)為B,CO平行于弦AD,作直線DC

(1)求證:DC為⊙O切線;

(2) AD·OC=8,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB⊙O的直徑,PA⊙O相切于點(diǎn)A,BP⊙O相交于點(diǎn)DC⊙O上的一點(diǎn),分別連接CB、CD,∠BCD60°.

(1)求∠ABD的度數(shù);

(2)AB6,求PD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校環(huán)保社成員想測(cè)量斜坡CD旁一棵樹AB的高度,他們先在點(diǎn)C處測(cè)得樹頂B的仰角為60°,然后在坡頂D測(cè)得樹頂B的仰角為30°,已知DEEA,斜坡CD的長度為30m,DE的長為15m,則樹AB的高度是_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖1,在平面直角坐標(biāo)系xOy中,拋物線W的函數(shù)表達(dá)式為y=﹣x2+x+4.拋物線Wx軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè),與y軸交于點(diǎn)C,它的對(duì)稱軸與x軸交于點(diǎn)D,直線l經(jīng)過C、D兩點(diǎn).

(1)A、B兩點(diǎn)的坐標(biāo)及直線l的函數(shù)表達(dá)式.

(2)將拋物線W沿x軸向右平移得到拋物線W′,設(shè)拋物線W′的對(duì)稱軸與直線l交于點(diǎn)F,當(dāng)△ACF為直角三角形時(shí),求點(diǎn)F的坐標(biāo),并直接寫出此時(shí)拋物線W′的函數(shù)表達(dá)式.

(3)如圖2,連接AC,CB,將△ACD沿x軸向右平移m個(gè)單位(0<m≤5),得到△A′C′D′.設(shè)A′C交直線l于點(diǎn)M,C′D′CB于點(diǎn)N,連接CC′,MN.求四邊形CMNC′的面積(用含m的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案