(2000•山西)不等式組的解集是   
【答案】分析:根據(jù)求不等式組解集“同大取大”的原則解答即可解決問(wèn)題.
解答:解:∵不等式組中,->-,
∴原不等式組的解集為:x>-
點(diǎn)評(píng):此題主要考查了一元一次不等式解集的求法,求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無(wú)解).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2000•山西)某地要建造一個(gè)圓形噴水池,在水池中央垂直于水面安裝一個(gè)花形柱子OA,O恰好在水面中心,安裝在柱子頂端A處的噴頭向外噴水,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,且在過(guò)OA的任一平面上,拋物線的形狀如圖(1)和(2)所示,建立直角坐標(biāo)系,水流噴出的高度y(米)與水平距離x(米)之間的關(guān)系式是y=-x2+2x+,請(qǐng)回答下列問(wèn)題.
(1)柱子OA的高度為多少米?
(2)噴出的水流距水平面的最大高度是多少?
(3)若不計(jì)其他因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年山西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•山西)某地要建造一個(gè)圓形噴水池,在水池中央垂直于水面安裝一個(gè)花形柱子OA,O恰好在水面中心,安裝在柱子頂端A處的噴頭向外噴水,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,且在過(guò)OA的任一平面上,拋物線的形狀如圖(1)和(2)所示,建立直角坐標(biāo)系,水流噴出的高度y(米)與水平距離x(米)之間的關(guān)系式是y=-x2+2x+,請(qǐng)回答下列問(wèn)題.
(1)柱子OA的高度為多少米?
(2)噴出的水流距水平面的最大高度是多少?
(3)若不計(jì)其他因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(05)(解析版) 題型:解答題

(2000•山西)請(qǐng)閱讀下面材料,并回答所提出的問(wèn)題.
三角形內(nèi)角平分線性質(zhì)定理:三角形的內(nèi)角平分線分對(duì)邊所得的兩條線段和這個(gè)角的兩邊對(duì)應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項(xiàng),所以考慮過(guò)C作CE∥AD,交BA的延長(zhǎng)線于E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明就可以轉(zhuǎn)化成證AE=AC.
證明:過(guò)C作CE∥DA,交BA的延長(zhǎng)線于E.
CE∥DA,
CE∥DA
(1)上述證明過(guò)程中,用到了哪些定理?(寫對(duì)兩個(gè)定理即可)
(2)在上述分析、證明過(guò)程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個(gè)填在后面的括號(hào)內(nèi).[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質(zhì)定理解答問(wèn)題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年山西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•山西)請(qǐng)閱讀下面材料,并回答所提出的問(wèn)題.
三角形內(nèi)角平分線性質(zhì)定理:三角形的內(nèi)角平分線分對(duì)邊所得的兩條線段和這個(gè)角的兩邊對(duì)應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項(xiàng),所以考慮過(guò)C作CE∥AD,交BA的延長(zhǎng)線于E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明就可以轉(zhuǎn)化成證AE=AC.
證明:過(guò)C作CE∥DA,交BA的延長(zhǎng)線于E.
CE∥DA,
CE∥DA
(1)上述證明過(guò)程中,用到了哪些定理?(寫對(duì)兩個(gè)定理即可)
(2)在上述分析、證明過(guò)程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個(gè)填在后面的括號(hào)內(nèi).[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質(zhì)定理解答問(wèn)題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年山西省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2000•山西)若二次函數(shù)y=ax2+bx+c的圖象如圖所示,則直線y=abx+c不經(jīng)過(guò)第    象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案