(2000•山西)請(qǐng)閱讀下面材料,并回答所提出的問(wèn)題.
三角形內(nèi)角平分線(xiàn)性質(zhì)定理:三角形的內(nèi)角平分線(xiàn)分對(duì)邊所得的兩條線(xiàn)段和這個(gè)角的兩邊對(duì)應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線(xiàn).
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線(xiàn)上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項(xiàng),所以考慮過(guò)C作CE∥AD,交BA的延長(zhǎng)線(xiàn)于E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明就可以轉(zhuǎn)化成證AE=AC.
證明:過(guò)C作CE∥DA,交BA的延長(zhǎng)線(xiàn)于E.
CE∥DA,
CE∥DA
(1)上述證明過(guò)程中,用到了哪些定理?(寫(xiě)對(duì)兩個(gè)定理即可)
(2)在上述分析、證明過(guò)程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個(gè)填在后面的括號(hào)內(nèi).[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類(lèi)討論思想.
(3)用三角形內(nèi)角平分線(xiàn)性質(zhì)定理解答問(wèn)題:
已知:如圖,△ABC中,AD是角平分線(xiàn),AB=5cm,AC=4cm,BC=7cm.求BD的長(zhǎng).

【答案】分析:(1)由比例式,想到作平行線(xiàn),用到了平行線(xiàn)的性質(zhì)定理;只要證明AE=AC即可,用到了等腰三角形的判定定理;由CE∥AD,寫(xiě)出比例式,用到了平行線(xiàn)分線(xiàn)段成比例定理(推論);
(2)把AC轉(zhuǎn)化成AE,是用的轉(zhuǎn)化思想;
(3)利用三角形內(nèi)角平分線(xiàn)性質(zhì)定理,列出比例式,代入數(shù)據(jù)計(jì)算出結(jié)果.
解答:解:(1)證明過(guò)程中用到的定理有:
①平行線(xiàn)的性質(zhì)定理;
②等腰三角形的判定定理;

(2)②轉(zhuǎn)化思想.(4分)

(3)∵AD是角平分線(xiàn),
(5分)
又∵AB=5,AC=4,BC=7,
,
∴BD=(cm).
點(diǎn)評(píng):此題是一道材料題,根據(jù)材料推得的結(jié)果進(jìn)行解題,主要考查平行線(xiàn)分線(xiàn)段成比例定理的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2000•山西)某校為了解一個(gè)年級(jí)的學(xué)習(xí)情況,在這個(gè)年級(jí)抽取了50名學(xué)生,對(duì)某學(xué)科進(jìn)行測(cè)試,將所得成績(jī)(成績(jī)均為整數(shù))整理后,畫(huà)出頻率分布直方圖,如圖所示.

請(qǐng)回答下列問(wèn)題:
(1)這次測(cè)試90分以上的人數(shù)(包括90分)有
21
21
人;
(2)本次測(cè)試這50名學(xué)生成績(jī)的及格率是
96
96
%(60分以上為及格,包括60分).
(3)這個(gè)年級(jí)此學(xué)科的學(xué)習(xí)情況如何?請(qǐng)你在下列給出的三個(gè)選項(xiàng)中,選一個(gè)把序號(hào)填在題后橫線(xiàn)上.
A、好B、一般C、不好答:
A
A

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2000•山西)請(qǐng)閱讀下面材料,并回答所提出的問(wèn)題.
三角形內(nèi)角平分線(xiàn)性質(zhì)定理:三角形的內(nèi)角平分線(xiàn)分對(duì)邊所得的兩條線(xiàn)段和這個(gè)角的兩邊對(duì)應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線(xiàn).
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線(xiàn)上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項(xiàng),所以考慮過(guò)C作CE∥AD,交BA的延長(zhǎng)線(xiàn)于E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明就可以轉(zhuǎn)化成證AE=AC.
證明:過(guò)C作CE∥DA,交BA的延長(zhǎng)線(xiàn)于E.
CE∥DA,
CE∥DA
(1)上述證明過(guò)程中,用到了哪些定理?(寫(xiě)對(duì)兩個(gè)定理即可)
(2)在上述分析、證明過(guò)程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個(gè)填在后面的括號(hào)內(nèi).[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類(lèi)討論思想.
(3)用三角形內(nèi)角平分線(xiàn)性質(zhì)定理解答問(wèn)題:
已知:如圖,△ABC中,AD是角平分線(xiàn),AB=5cm,AC=4cm,BC=7cm.求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《相交線(xiàn)與平行線(xiàn)》(01)(解析版) 題型:解答題

(2000•山西)請(qǐng)閱讀下面材料,并回答所提出的問(wèn)題.
三角形內(nèi)角平分線(xiàn)性質(zhì)定理:三角形的內(nèi)角平分線(xiàn)分對(duì)邊所得的兩條線(xiàn)段和這個(gè)角的兩邊對(duì)應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線(xiàn).
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線(xiàn)上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項(xiàng),所以考慮過(guò)C作CE∥AD,交BA的延長(zhǎng)線(xiàn)于E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明就可以轉(zhuǎn)化成證AE=AC.
證明:過(guò)C作CE∥DA,交BA的延長(zhǎng)線(xiàn)于E.
CE∥DA,
CE∥DA
(1)上述證明過(guò)程中,用到了哪些定理?(寫(xiě)對(duì)兩個(gè)定理即可)
(2)在上述分析、證明過(guò)程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個(gè)填在后面的括號(hào)內(nèi).[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類(lèi)討論思想.
(3)用三角形內(nèi)角平分線(xiàn)性質(zhì)定理解答問(wèn)題:
已知:如圖,△ABC中,AD是角平分線(xiàn),AB=5cm,AC=4cm,BC=7cm.求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年山西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•山西)請(qǐng)閱讀下面材料,并回答所提出的問(wèn)題.
三角形內(nèi)角平分線(xiàn)性質(zhì)定理:三角形的內(nèi)角平分線(xiàn)分對(duì)邊所得的兩條線(xiàn)段和這個(gè)角的兩邊對(duì)應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線(xiàn).
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線(xiàn)上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項(xiàng),所以考慮過(guò)C作CE∥AD,交BA的延長(zhǎng)線(xiàn)于E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明就可以轉(zhuǎn)化成證AE=AC.
證明:過(guò)C作CE∥DA,交BA的延長(zhǎng)線(xiàn)于E.
CE∥DA,
CE∥DA
(1)上述證明過(guò)程中,用到了哪些定理?(寫(xiě)對(duì)兩個(gè)定理即可)
(2)在上述分析、證明過(guò)程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個(gè)填在后面的括號(hào)內(nèi).[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類(lèi)討論思想.
(3)用三角形內(nèi)角平分線(xiàn)性質(zhì)定理解答問(wèn)題:
已知:如圖,△ABC中,AD是角平分線(xiàn),AB=5cm,AC=4cm,BC=7cm.求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案