【題目】一輛客車從甲地開往乙地,一輛轎車從乙地開往甲地,兩車同時(shí)出發(fā),兩車行駛x小時(shí)后,記客車離甲地的距離y1千米,轎車離甲地的距離y2千米,y1、y2關(guān)于x的函數(shù)圖象如圖所示:
①根據(jù)圖象直接寫出y1、y2關(guān)于x的函數(shù)關(guān)系式;
②當(dāng)兩車相遇時(shí),求此時(shí)客車行駛的時(shí)間.
③相遇后,兩車相距200千米時(shí),求客車又行駛的時(shí)間.
【答案】①y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6);②小時(shí);③小時(shí).
【解析】
(1)根據(jù)圖象,用待定系數(shù)法求函數(shù)解析式;(2)結(jié)合(1),當(dāng)兩車相遇時(shí),y1=y(tǒng)2,即60x=﹣100x+600;(3)結(jié)合圖象,可得:相遇后相距200千米,則y1﹣y2=200,即60x+100x﹣600=200.
解:①設(shè)y1=kx,則將(10,600)代入得出:600=10k,
解得:k=60,
∴y1=60x (0≤x≤10),
設(shè)y2=ax+b,則將(0,600),(6,0)代入得出:
,
解得:,
∴y2=﹣100x+600 (0≤x≤6);
②當(dāng)兩車相遇時(shí),y1=y(tǒng)2,即60x=﹣100x+600
解得:x=;
∴當(dāng)兩車相遇時(shí),此時(shí)客車行駛了小時(shí);
③相遇后相距200千米,則y1﹣y2=200,即60x+100x﹣600=200,
解得:x=5
5﹣,
∴相遇后,兩車相距200千米時(shí),客車又行駛的時(shí)間小時(shí).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,D為AB上不與AB重合的一個(gè)動點(diǎn),過點(diǎn)D分別作DE⊥AC于點(diǎn)E,DF⊥BC于點(diǎn)F,則線段EF的最小值為( )
A. 3 B. 4 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-6x+a-2=0.
(1)如果該方程有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(2)如果該方程有兩個(gè)相等的實(shí)數(shù)根,求出這兩個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,F為弦AC的中點(diǎn),連接OF并延長交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BA的延長線于點(diǎn)E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=1,求四邊形ACDE面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校,以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖,根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是______米;
(2)小明在書店停留了______分鐘;
(3)本次上學(xué)途中,小明一共行駛了_____米,一共用了_______分鐘;
(4)在整個(gè)上學(xué)的途中________(哪個(gè)時(shí)間段)小明騎車速度最快,最快的速度是____米/分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE.
證明:∵∠B+∠BCD=180°,
∴AB∥ ( )
∴∠B=∠DCE( )
又∵∠B=∠D,
∴∠DCE=∠D( )
∴ ∥ ( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi),為更好地做決策,自來水公司隨機(jī)抽取部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括最大值但不包括最小值),請你根據(jù)統(tǒng)計(jì)圖解決下列問題:
(1)此次抽樣調(diào)查的樣本容量是
(2)補(bǔ)全左側(cè)統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中“25噸~30噸”部分的圓心角度數(shù).
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AD是△ABC的邊BC上的中線,AB=12,AC=8,則邊BC的取值范圍是_____(dá)__________________;中線AD的取值范圍是_____(dá)_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P是三角形ABC內(nèi)一點(diǎn),射線PD∥AC,射線PE∥AB.
(1)當(dāng)點(diǎn)D,E分別在AB,BC上時(shí),
①補(bǔ)全圖1;
②猜想∠DPE與∠A的數(shù)量關(guān)系,并證明;
(2)當(dāng)點(diǎn)D,E都在線段BC上時(shí),你在(1)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com