【題目】AD是△ABC的邊BC上的中線,AB=12,AC=8,則邊BC的取值范圍是_______________________;中線AD的取值范圍是__________________.
【答案】4<BC<20 , 2<AD<10
【解析】BC邊的取值范圍可在△ABC中利用三角形的三邊關(guān)系進行求解,而對于中線AD的取值范圍可延長AD至點E,使AD=DE,得出△ACD≌△EBD,進而在△ABE中利用三角形三邊關(guān)系求解.
解:如圖所示,
在△ABC中,則AB-AC<BC<AB+AC,
即12-8<BC<12+8,4<BC<20,
延長AD至點E,使AD=DE,連接BE,
∵AD是△ABC的邊BC上的中線,∴BD=CD,
又∠ADC=∠BDE,AD=DE
∴△ACD≌△EBD,∴BE=AC,
在△ABE中,AB-BE<AE<AB+BE,即AB-AC<AE<AB+AC,
12-8<AE<12+8,即4<AE<20,
∴2<AD<10.
故此題的答案為4<BC<20,2<AD<10.
本題主要考查了全等三角形的判定及性質(zhì)以及三角形的三邊關(guān)系問題,能夠理解掌握并熟練運用.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2cm,BC=6cm,把△ABC沿對角線AC折疊,得到△AB′C,且B′C與AD相交于點E,則AE的長為cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有這樣一個問題:探究函數(shù) 的圖象與性質(zhì).小懷根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù) 的圖象與性質(zhì)進行了探究.下面是小懷的探究過程,請補充完成:
(1)函數(shù) 的自變量x的取值范圍是;
(2)列出y與x的幾組對應(yīng)值.請直接寫出m的值,m=;
(3)請在平面直角坐標系xOy中,描出以上表中各對對應(yīng)值為坐標的點,并畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出函數(shù) 的一條性質(zhì).
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣ | 0 | 1 | 2 | m | 4 | 5 | … |
y | … |
|
|
| 2 | 3 | ﹣1 | 0 |
|
|
|
|
| … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】人和人之間講友情,有趣的是,數(shù)與數(shù)之間也有相類似的關(guān)系. 若兩個不同的自然數(shù)的所有真因數(shù)(即除了自身以外的正約數(shù))之和相等,我們稱這兩個數(shù)為“親和數(shù)”. 例如:18的約數(shù)有1、2、3、6、9、18,它的真因數(shù)之和1+2+3+6+9=21;51的約數(shù)有1、3、17、51,它的真因數(shù)之和1+3+17=21,所以18和51為“親和數(shù)”. 數(shù)還可以與動物形象地聯(lián)系起來,我們稱一個兩頭(首位與末位)都是的數(shù)為“兩頭蛇數(shù)”.
(1)6的“親和數(shù)”為 ;將一個四位的“兩頭蛇數(shù)”去掉兩頭,得到一個兩位數(shù),它恰好是這個“兩頭蛇數(shù)”的約數(shù),求滿足條件的“兩頭蛇數(shù)”.
(2)已知兩個“親和數(shù)”的真因數(shù)之和都等于15,且這兩個“親和數(shù)”中較大的數(shù)能將一個正中間數(shù)位(百位)上的數(shù)為4的五位“兩頭蛇數(shù)”整除,若這個五位“兩頭蛇數(shù)”的千位上的數(shù)字小于十位上的數(shù)字,求滿足條件的“兩頭蛇數(shù)”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上點 A、B 到表示-2 的點的距離都為 6,P 為線段 AB 上任一點,C,D 兩點分別從 P,B 同時向 A 點移動,且 C 點運動速度為每秒 2 個單位長度,D 點運動速度 為每秒 3 個單位長度,運動時間為 t 秒.
(1)A 點表示數(shù)為 ,B 點表示的數(shù)為 ,AB= .
(2)若 P 點表示的數(shù)是 0,
①運動 1 秒后,求 CD 的長度;
②當 D 在 BP 上運動時,求線段 AC、CD 之間的數(shù)量關(guān)系式.
(3)若 t=2 秒時,CD=1,請直接寫出 P 點表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次課題學習中,老師讓同學們合作編題.某學習小組受趙爽弦圖的啟發(fā),編寫了下面這道題,請你來解一解.
如圖,將矩形ABCD的四邊BA、CB、DC、AD分別延長至E、F、G、H,使得AE=CG,BF=DH,連結(jié)EF、FG、GH、HE.
(1)求證:四邊形EFGH為平行四邊形;
(2)若矩形ABCD是邊長為1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,點D、E分別是邊BC、CA上的點,且BD=CE,AD、BE相交于點O.
(1)求證:△BAE≌△ACD;
(2)求∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為40和28,則△EDF的面積為( )
A. 12 B. 6 C. 7 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com