【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC; ②四邊形ADFE為菱形; ③AD=4AG; ④FH=BD
其中正確的結(jié)論有( ).
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
【答案】C
【解析】∵△ACE是等邊三角形,∴∠EAC=60°,AE=AC.
∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC.
∵F為AB的中點(diǎn),∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,
∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正確,
∵EF⊥AC,∠ACB=90°,∴HF∥BC.
∵F是AB的中點(diǎn), .
,AB=BD, ,故④說法正確;
∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°.
∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF.
∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF.
∵FE=AB,∴四邊形ADFE為平行四邊形.
∵AE≠EF,∴四邊形ADFE不是菱形;故②說法不正確;
∵四邊形ADFE為平行四邊形,
, .
∵AD=AB,∴AD=4AG,故③說法正確,
所以正確的有:①③④.故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是以BC為底的等腰三角形,AD是邊BC上的高,點(diǎn)E、F分別是AB、AC的中點(diǎn).
(1)求證:四邊形AEDF是菱形;
(2)如果四邊形AEDF的周長(zhǎng)為12,兩條對(duì)角線的和等于7,求四邊形AEDF的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D 為 AB的中點(diǎn).
(1)如果點(diǎn) P 在線段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動(dòng).
①若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,經(jīng)過 1 秒后,△BPD 與△CQP 是否全等,請(qǐng)說明理由;
②若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD 與△CQP 全等?
(2)若點(diǎn) Q 以②中的運(yùn)動(dòng)速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來的運(yùn)動(dòng)速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動(dòng),則經(jīng)過 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某長(zhǎng)方形廣場(chǎng)的四個(gè)角都有一個(gè)半徑相同的四分之一圓形的草地,若圓形的半徑為x米,長(zhǎng)方形長(zhǎng)為a米,寬為b米
(1)分別用代數(shù)式表示草地和空地的面積;
(2)若長(zhǎng)方形長(zhǎng)為300米,寬為200米,圓形的半徑為10米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留到整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),記頂點(diǎn)都是整點(diǎn)的三角形為整點(diǎn)三角形.如圖,已知整點(diǎn)A(2,3),B(4,4),請(qǐng)?jiān)谒o網(wǎng)格區(qū)域(含邊界)上按要求畫整點(diǎn)三角形.
(1)在圖1中畫一個(gè)△PAB,使點(diǎn)P的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo);
(2)在圖2中畫一個(gè)△PAB,使點(diǎn)P,B橫坐標(biāo)的平方和等于它們縱坐標(biāo)和的4倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上, 老師要求同學(xué)們利用三角板畫兩條平行線.老師說苗苗和小華兩位同學(xué)畫法都是正確的,兩位同學(xué)的畫法如下:
苗苗的畫法:
①將含30°角的三角尺的最長(zhǎng)邊與直線a重合,另一塊三角尺最長(zhǎng)邊與含30°角的三角尺的最短邊緊貼;
②將含30°角的三角尺沿貼合邊平移一段距離,畫出最長(zhǎng)邊所在直線b,則b//a.
小華的畫法:
①將含30°角三角尺的最長(zhǎng)邊與直線a重合,用虛線做出一條最短邊所在直線;
②再次將含30°角三角尺的最短邊與虛線重合,畫出最長(zhǎng)邊所在直線b,則b//a.
請(qǐng)?jiān)诿缑绾托∪A兩位同學(xué)畫平行線的方法中選出你喜歡的一種,并寫出這種畫圖的依據(jù).
答:我喜歡__________同學(xué)的畫法,畫圖的依據(jù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中點(diǎn)A(, ),B(2,0),點(diǎn)C為線段OB上一個(gè)動(dòng)點(diǎn),以AC為腰作等腰直角△ACD,且AC=AD.
(1)△AOB的面積;
(2)證明:OC2+CB2=CD2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某社區(qū)居民的用電情況,隨機(jī)對(duì)該社區(qū)10戶居民進(jìn)行調(diào)查,下表是這10戶居民2015年4月份用電量的調(diào)查結(jié)果:
居民(戶) | 1 | 2 | 3 | 4 |
月用電量(度/戶) | 30 | 42 | 50 | 51 |
那么關(guān)于這10戶居民月用電量(單位:度),下列說法錯(cuò)誤的是( )
A.中位數(shù)是50
B.眾數(shù)是51
C.方差是42
D.極差是21
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com