【題目】已知:如圖在ABC ,ADE 中,BAC DAE 90,AB AC AD AE ,點 C D , E 三點在同一條直線上,連接 BD , BE.求證:(1ABD≌△ACE ;(2 BD CE ;(3 BE AC AD

【答案】(1)見解析;(2)見解析;(3)見解析

【解析】

1)要證ABD≌△ACE現(xiàn)有AB=AC,AD=AE,需它們的夾角∠BAD=CAE,而由∠BAC=DAE=90°很易證得;

2)要證BDCE,需證∠BDC=90°,需證∠DBC+BCD=90°可由直角三角形提供;

(3)由三角形三邊關系可得BE AB AE,由全等可知AB=AC,AE=AD,即可得結(jié)論.

1)∵∠BAC=DAE=90°,

∴∠BAC+CAD=EAD+CAD,

∴∠BAD=CAE,

BADCAE,

,

ABD≌△ACESAS.

2BDCE,理由如下:

由(1)知ABD≌△ACE

∴∠ABD=ACE,

∵∠ABD+DBC=45°,

∴∠ACE+DBC=45°,

∴∠DBC+DCB=DBC+ACE+ACB=90°,

∴∠BDC=90°,

BDCE

3)在△ABE中,BE AB AE

AB=AC,AE=AD

BE AC AD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,.以每秒個單位的速度運動,以為一邊在的右下方作正方形.同時垂直于的直線以每秒個單位的速度運動,設運動時間為秒,當________.秒時,直線和正方形開始有公共點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,等腰直角三角形中,,,直線經(jīng)過點,過,過.

1)求證:.

2)已知直線軸交于點,將直線繞著點順時針旋轉(zhuǎn)45°,如圖2,求的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】省城太原某大型超市計劃在1223日推出“十周年”店慶促銷活動,該超市為本次促銷活動設計了兩種促銷方案.方案一:全場商品全部打85折;方案二:商品總價不超過200元時,不打折,超過200元時,超過的部分打7折.小穎和爸爸媽媽準備在該超市促銷活動期間去該超市購物,所購商品總價一定會超過200元.

1)小穎和爸爸媽媽購買的商品總價為元,按方案一應該支付 元;按方案二應該支付 元;(用含的代數(shù)式表示)

2)當小穎和爸爸媽媽購買的商品總價為多少元時,按方案一或方案二支付的金額都一樣?

3)若小穎和爸爸媽媽購買的商品總價為500元,請你幫助小穎計算一下,按哪種方案支付更劃算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù) 的圖象與正比例函數(shù) 的圖象相交于(1,),兩點,點在第四象限, 軸,.

(1)的值及點的坐標;

(2)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,的平分線為,內(nèi)的一條射線,若,時,求的度數(shù);

2)某同學經(jīng)過認真的分析,得出一個關系式:,你認為這個同學得出的關系式是正確的嗎?若正確,請把得出這個結(jié)論的過程寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為8/千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(/千克)之間的函數(shù)關系如圖所示.

(1)的函數(shù)關系式,并寫出的取值范圍;

(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?

(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高中進行選科走班教學改革,語文、數(shù)學、英語三門為必修學科,另外還需從物理、化學、生物、政治、歷史、地理(分別記為A、B、C、D、E、F)六門選修學科中任選三門,現(xiàn)對該校某班選科情況進行調(diào)查,對調(diào)查結(jié)果進行了分析統(tǒng)計,并制作了兩幅不完整的統(tǒng)計圖.

請根據(jù)以上信息,完成下列問題:

(1)該班共有學生人;

(2)請將條形統(tǒng)計圖補充完整;

(3)該班某同學物理成績特別優(yōu)異,已經(jīng)從選修學科中選定物理,還需從余下選修學科中任意選擇兩門,請用列表或畫樹狀圖的方法,求出該同學恰好選中化學、歷史兩科的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 的外角的平分線交于點P.

(1),求的度數(shù);

(2),的度數(shù);

(3)根據(jù)以 上計算,試寫出的數(shù)量關系.

查看答案和解析>>

同步練習冊答案