如圖,在△ABC中,∠B=45°,AB=
2
,BC=
3
+1,則邊AC的長(zhǎng)為( 。
A、
2
B、
3
C、2
D、
6
考點(diǎn):勾股定理
專題:
分析:過(guò)點(diǎn)A作AD⊥BC于D,判定出△ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出AD、BD,在Rt△ACD中,利用勾股定理列式求出AC即可.
解答:解:如圖,過(guò)點(diǎn)A作AD⊥BC于D,
∵∠B=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∴AD2+BD2=2AD2=AB2=
2
2=2,
解得AD=BD=1,
∵BC=
3
+1,
∴CD=
3
+1-1=
3
,
在Rt△ACD中,AC=
AD2+CD2
=
12+
3
2
=2.
故選C.
點(diǎn)評(píng):本題主要考查了勾股定理,等腰直角三角形的判定與性質(zhì),作輔助線,構(gòu)造出兩個(gè)直角三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若y=(m+3)xm-5是反比例函數(shù),則m滿足的條件是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們?cè)趯W(xué)習(xí)實(shí)數(shù)時(shí),畫了這樣一個(gè)圖:即以數(shù)軸上1個(gè)單位長(zhǎng)的線段為邊作正方形,再以原點(diǎn)O為圓心,正方形的對(duì)角線OB長(zhǎng)為半徑作弧,交x軸于點(diǎn)A.請(qǐng)根據(jù)圖形填空.
(1)線段OA=
 
個(gè)單位長(zhǎng);
(2)這個(gè)圖形的目的是為了說(shuō)明
 

(3)這種研究和解決問(wèn)題的方式,體現(xiàn)的數(shù)學(xué)思想方法是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:(π-2012)0+
364
-|-3|-(
1
2
-2-
9
-tan45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為1的正方形中,分別以四個(gè)頂點(diǎn)為圓心,作半徑為1的圓弧,則圖中陰影部分的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知矩形的周長(zhǎng)為36cm,矩形繞它的一條邊旋轉(zhuǎn)形成一個(gè)圓柱,矩形的長(zhǎng)、寬各為多少時(shí),旋轉(zhuǎn)的側(cè)面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,七個(gè)大小不等的圓,其中沒(méi)能體現(xiàn)出圓與圓的位置關(guān)系是(  )
A、外切B、內(nèi)含C、相交D、內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x=
3
時(shí),代數(shù)式x2-2x+2
3
的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

九年級(jí)6名同這的中考體育成績(jī)(單位:分)分別為49,47,50,46,48,49,則這6個(gè)數(shù)的中位數(shù)是
 
 分.

查看答案和解析>>

同步練習(xí)冊(cè)答案