【題目】①如圖1,AB∥CD,則∠A +∠E +∠C=180°;②如圖2,AB∥CD,則∠E =∠A +∠C;③如圖3,AB∥CD,則∠A +∠E-∠1=180° ; ④如圖4,AB∥CD,則∠A=∠C +∠P.以上結(jié)論正確的個(gè)數(shù)是( )
A. 、1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】①如圖1,過(guò)點(diǎn)E作EF∥AB,因?yàn)?/span>AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,則①錯(cuò)誤;
②如圖2,過(guò)點(diǎn)E作EF∥AB,因?yàn)?/span>AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,則②正確;
③如圖3,過(guò)點(diǎn)E作EF∥AB,因?yàn)?/span>AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,則③正確;
④如圖4,過(guò)點(diǎn)P作PF∥AB,因?yàn)?/span>AB∥CD,所以AB∥PF∥CD,所以∠A+∠APF,∠C+∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,則④正確;
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A是反比例函數(shù)的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,若將線(xiàn)段O A繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段OB,則點(diǎn)B所在圖象的函數(shù)表達(dá)式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點(diǎn)A(1,3),過(guò)點(diǎn)A作x軸的平行線(xiàn),分別交兩條拋物線(xiàn)于點(diǎn)B,C.則以下結(jié)論:
①無(wú)論x取何值,y2的值總是正數(shù);
②a=1;
③當(dāng)x=0時(shí),y2﹣y1=4
④2AB=3AC.
其中正確結(jié)論是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=(x+m)2+k的圖象,其頂點(diǎn)坐標(biāo)為M(1,﹣4)
(1)求出圖象與x軸的交點(diǎn)A、B的坐標(biāo);
(2)在二次函數(shù)的圖象上是否存在點(diǎn)P,使S△PAB=S△MAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,對(duì)正方形ABCD及其內(nèi)部的每個(gè)點(diǎn)進(jìn)行如下操作:把每個(gè)點(diǎn)的橫、縱坐標(biāo)都乘同一實(shí)數(shù)a,將得到的點(diǎn)先向右平移m個(gè)單位長(zhǎng)度,再向上平移n個(gè)單位長(zhǎng)度(m>0,n>0),得到正方形A′B′C′D′及其內(nèi)部的點(diǎn),其中點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為A′,B′.已知正方形ABCD內(nèi)部的一個(gè)點(diǎn)F經(jīng)過(guò)上述操作后得到的對(duì)應(yīng)點(diǎn)F′與點(diǎn)F重合,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊△ABC和⊙M.
(1)如圖l,若⊙M與BA的延長(zhǎng)線(xiàn)AK及邊AC均相切,求證: AM∥BC;
(2)如圖2,若⊙M與BA的延長(zhǎng)線(xiàn)AK、BC的延長(zhǎng)線(xiàn)CF及邊AC均相切,求證:四邊形ABCM是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(5,0),點(diǎn)B的坐標(biāo)為(3,2),直線(xiàn)經(jīng)過(guò)原點(diǎn)和點(diǎn)B,直線(xiàn)經(jīng)過(guò)點(diǎn)A和點(diǎn)B.
(1)求直線(xiàn), 的函數(shù)關(guān)系式;
(2)根據(jù)函數(shù)圖像回答:不等式的解集為 ;
(3)若點(diǎn)是軸上的一動(dòng)點(diǎn),經(jīng)過(guò)點(diǎn)P作直線(xiàn)∥軸,交直線(xiàn)于點(diǎn)C,交直線(xiàn)于點(diǎn)D,分別經(jīng)過(guò)點(diǎn)C,D向軸作垂線(xiàn),垂足分別為點(diǎn)E, F,得長(zhǎng)方形CDFE.
①若設(shè)點(diǎn)P的橫坐標(biāo)為m,則點(diǎn)C的坐標(biāo)為(m, ),點(diǎn)D的坐標(biāo)為(m, );(用含字母m的式子表示)
②若長(zhǎng)方形CDFE的周長(zhǎng)為26,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)的圖像與x軸交于點(diǎn)A,交y軸于點(diǎn)B.
(1)求m的值與點(diǎn)B的坐標(biāo);
(2)若點(diǎn)C在y軸上,且使得△ABC的面積為12,請(qǐng)求出點(diǎn)C的坐標(biāo).
(3)若點(diǎn)P在x軸上,且△ABP為等腰三角形,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com