【題目】如圖,已知等邊△AOC的周長為3,作OD⊥AC于點D,在x軸上取點C1,使CC1=DC,以CC1為邊作等邊△A1CC1;作CD1⊥A1C1于點D1,在x軸上取點C2,使C1C2=D1C1,以C1C2為邊作等邊△A2C1C2;作C1D2⊥A2C2于點D2,在x軸上取點C,使C2C3=D2C2,以C2C3為邊作等邊△A3C2C3;…,且點A,A1,A2,A3,…都在第一象限,如此下去,則等邊△A2019C2018C2019的頂點A2019坐標(biāo)為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=12,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對應(yīng)點是點G,過點B作BE⊥CG,垂足為E且在AD上,BE交PC于點F.
(1)如圖1,若點E是AD的中點,求證:△AEB≌△DEC;
(2)如圖2,①求證:BP=BF;
②當(dāng)AD=25,且AE<DE時,求cos∠PCB的值;
③當(dāng)BP=9時,求BEEF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:經(jīng)過三角形一邊中點,且平分三角形周長的直線叫做這個三角形在該邊上的中分線,其中落在三角形內(nèi)部的部分叫做中分線段.
(1)如圖,△ABC中,AC>AB,DE是△ABC在BC邊上的中分線段,F為AC中點,過點B作DE的垂線交AC于點G,垂足為H,設(shè)AC=b,AB=c.
①求證:DF=EF;
②若b=6,c=4,求CG的長度;
(2)若題(1)中,S△BDH=S△EGH,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,AC為弦.過BC延長線上一點G,作GD⊥AO于點D,交AC于點E,交⊙O于點F,M是GE的中點,連接CF,CM.
(1)判斷CM與⊙O的位置關(guān)系,并說明理由;
(2)若∠ECF=2∠A,CM=6,CF=4,求MF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,ニ次函數(shù)的圖像與坐標(biāo)軸交于A,B,C三點,其中點A的坐標(biāo)為(-3,0),點B的坐標(biāo)為(4,0),連接AC,BC.動點P從點A出發(fā),在線段AC上以每秒1個單位長度的速度向點C作勻速運動;同時,動點Q從點0出發(fā),在線段OB上以每秒1個單位長度的速度向點B作勻速運動,當(dāng)其中一點到達終點時,另一點隨之停止運動,設(shè)運動時間為t秒.連接PQ
(1)填空:b=_, c=_;
(2)在點P,Q運動過程中,△APQ可能是直角三角形嗎?請說明理由;
(3)如圖2,點N的坐標(biāo)為,線段PQ的中點為H,連接NH,當(dāng)點Q關(guān)于直線NH的對稱點Q`恰好落在線段BC上時,請直接寫出點Q`的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OA是⊙O的半徑,AB為⊙O的弦,過點O作OP⊥OA,交AB的延長線上一點P,OP交⊙O于點D,連接AD,BD,過點B作⊙O的切線BC交OP于點C
(1)求證:∠CBP=∠ADB;
(2)若O4=4,AB=2,求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結(jié)果精確到0.1米, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,且AB=12,點C為半圓上的一點.將此半圓沿BC所在的直線折疊,若圓弧BC恰好過圓心O,則圖中陰影部分的面積是( 。
A. 4πB. 5πC. 6πD. 8π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,CD∥AB,∠ABC=90°,AB=BC,將△BCD繞點B逆時針旋轉(zhuǎn)90°得到△BAE,連接CE,過點B作BG⊥CE于點F,交AD于點G.
(1)如圖1,CD=AB.
①求證:四邊形ABCD是正方形;
②求證:G是AD中點;
(2)如圖2,若CD<AB,請判斷G是否仍然是AD的中點?若是,請證明:若不是,請說理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com