【題目】△ABC是等邊三角形,點(diǎn)D、E分別在AB、BC上,BD=CE,連接AE,CD交于點(diǎn)O
(1)如圖1,求證:CD=AE;
(2)如圖2,作等邊△AEF,連接BF,DF.直接寫(xiě)出圖2中所有120度的角.
【答案】(1)見(jiàn)解析;(2)∠ADF,∠AOC,∠DOE,∠FBC
【解析】
(1)根據(jù)等邊三角形的性質(zhì)得出AB=BC,∠BAC=∠ACE=∠B=60°,根據(jù)“SAS”證明△CAE≌△BCD,即可證出結(jié)論;
(2)根據(jù)等邊三角形的性質(zhì)直接得出120度的角即可.
解:(1)∵△ABC是等邊三角形,
∴∠B=∠ACE= 60°,BC=AC.
在△BCD≌△CAE中,
,
∴△BCD≌△CAE(SAS),
∴CD=AE.
(2)∵△AEF是等邊三角形,
∴∠EAF=60°,AF=AE,
∴∠FAB+∠BAE=∠CAE+∠BAE,
∴∠FAB =∠CAE.
∵AF=AE,∠FAB =∠CAE,AB=AC,
∴△AFB≌△AEC(SAS),
∴∠ABF=∠ACE=60°,FB=EC,
∴∠FBC=∠ABF+∠ABE=120°.
∵BD=CE,FB=EC,
∴BD= FB
∴∠FDB=60°,且DF∥CE,
∴∠ADF=120°.
∵ DF∥CE,且DF=CE,
∴ 四邊形DFEC是平行四邊形,
∴ DC∥FE
∴∠AOD=∠AEF= 60°,
∴∠AOC=120°,
∴∠DOE=∠AOC=120°.
故120度角的有∠ADF,∠AOC,∠DOE,∠FBC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)C,連接PO,若△POC的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長(zhǎng)25m)的空地上修建一個(gè)矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍。ㄈ鐖D).若設(shè)綠化帶的BC邊長(zhǎng)為x m,綠化帶的面積為y m2.
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),滿足條件的綠化帶的面積最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,王華同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行12m到達(dá)Q點(diǎn)時(shí),發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部.已知王華同學(xué)的身高是1.6m,兩個(gè)路燈的高度都是9.6m.
(1)求兩個(gè)路燈之間的距離;
(2)當(dāng)王華同學(xué)走到路燈BD處時(shí),他在路燈AC下的影子長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:四邊形ABCD中,AC為對(duì)角線,∠DAC=∠BCA,且AD=BC,CD⊥AD于點(diǎn)D。
(1)如圖1,求證:四邊形ABCD是矩形。
(2)如圖2,點(diǎn)E和點(diǎn)F分別為邊AB和邊BC的中點(diǎn),連接DE、DF分別交AC于點(diǎn)G和點(diǎn)H,連接BG,在不連接其它線段的情況下,請(qǐng)寫(xiě)出所有面積是△FHC面積的2倍的所有三角形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E、D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)求點(diǎn)C和點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C是以AB為直徑的半圓O的三等分點(diǎn),AC=2,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com