【題目】如圖,將正方形對折后展開(圖④是連續(xù)兩次對折后再展開),再按圖示方法折疊,能夠得到一個直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).
A. 個 B. 個 C. 個 D. 個
【答案】C
【解析】
試題根據(jù)含30°角所對的直角邊等于斜邊一半,然后依次判斷直角三角形中能否找到一個角等于30°,從而判斷出答案.
試題解析:設正方形的邊長為a,
在圖①中,CE=ED=a,BC=DB=a,
故∠EBC=∠CEB≠30°,故△ECB,故不能滿足它的一條直角邊等于斜邊的一半.
在圖②中,BC=a,AC=AE=a,
故∠BAC=30°,
從而可得∠CAD=∠EAD=30°,故能滿足它的一條直角邊等于斜邊的一半.
在圖③中,AC=a,AB=a,
故∠ABC=∠DBC≠30°,故不能滿足它的一條直角邊等于斜邊的一半.
在圖④中,AE=a,AB=AD=a,
故∠ABE=30°,∠EAB=60°,
從而可得∠BAC=∠DAC=60°,∠ACB=30°,故能滿足它的一條直角邊等于斜邊的一半.
綜上可得有2個滿足條件.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,射線AM∥BN,點E,F,D在射線AM上,點C在射線BN上,且∠BCD=∠A,BE平分∠ABF,BD平分∠FBC.
(1)求證:AB∥CD.
(2)如果平行移動CD,那么∠AFB與∠ADB的比值是否發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這兩個角的比值.
(3)如果∠A=100°,那么在平行移動CD的過程中,是否存在某一時刻,使∠AEB=∠BDC?若存在,求出此時∠AEB的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板中的兩塊直角三角板的直角頂點C按如圖方式疊放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,則∠ACB的度數(shù)為 .
②若∠ACB=140°,則∠DCE的度數(shù)為 .
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關系,并說明理由.
(3)當∠ACE<90°且點E在直線AC的上方時,當這兩塊三角尺有一組邊互相平行時,請直接寫出∠ACE角度所有可能的值(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(﹣1,1)、B(4,6)在拋物線y=ax2+bx上
(1)求拋物線的解析式;
(2)如圖1,點F的坐標為(0,m)(m>2),直線AF交拋物線于另一點G,過點G作x軸的垂線,垂足為H.設拋物線與x軸的正半軸交于點E,連接FH、AE,求證:FH∥AE;
(3)如圖2,直線AB分別交x軸、y軸于C、D兩點.點P從點C出發(fā),沿射線CD方向勻速運動,速度為每秒
個單位長度;同時點Q從原點O出發(fā),沿x軸正方向勻速運動,速度為每秒1個單位長度.點M是直線PQ與拋物線的一個交點,當運動到t秒時,QM=2PM,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】七年級(1)班的宣傳委員在辦黑板報時,采用了下面的圖案作為邊框,其中每個黑色六邊形與6個自色六邊形相鄰,若一段邊框上有25個黑色六邊形,則這段邊框共有白色六邊形
A. 100個 B. 102個 C. 98個 D. 150個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一列數(shù)-1,2,-1,2,2,-1,2,2,2,-1,…其中相鄰的兩個-1被2隔開,第n對-1之問有n個2,則第21個數(shù)是______,這一列數(shù)的前2019個數(shù)的和為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(本小題滿分8分)某學校組織八年級學生參加社會實踐活動,若單獨租用35座客車若干輛,則剛好坐滿;若單獨租用55座客車,則可以少租一輛,且余45個空座位.
(1)求該校八年級學生參加社會實踐活動的人數(shù);
(2)已知35座客車的租金為每輛320元,55座客車的租金為每輛400元.根據(jù)租車資金不超過1500元的預算,學校決定同時租用這兩種客車共4輛(可以坐不滿).請你計算本次社會實踐活動所需車輛的租金.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一列數(shù)-1,2,-1,2,2,-1,2,2,2,-1,…其中相鄰的兩個-1被2隔開,第n對-1之問有n個2,則第21個數(shù)是______,這一列數(shù)的前2019個數(shù)的和為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點G,連接AG交BE于點H,連接DH,下列結論正確的個數(shù)是( )
①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤線段DH的最小值是2 ﹣2.
A.2
B.3
C.4
D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com