【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,CW=6cm,求陰影部分面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,E是等邊三角形ABC的邊AB所在直線上一點,D是邊BC所在直線上一點,且D與C不重合,若EC=ED.則稱D為點C關(guān)于等邊三角形ABC的反稱點,點E稱為反稱中心.
在平面直角坐標(biāo)系xOy中,
(1)已知等邊三角形AOC的頂點C的坐標(biāo)為(2,0),點A在第一象限內(nèi),反稱中心E在直線AO上,反稱點D在直線OC上.
①如圖2,若E為邊AO的中點,在圖中作出點C關(guān)于等邊三角形AOC的反稱點D,并直接寫出點D的坐標(biāo): ;
②若AE=2,求點C關(guān)于等邊三角形AOC的反稱點D的坐標(biāo);
(2)若等邊三角形ABC的頂點為B(n,0),C(n+1,0),反稱中心E在直線AB上,反稱點D在直線BC上,且2≤AE<3.請直接寫出點C關(guān)于等邊三角形ABC的反稱點D的橫坐標(biāo)t的取值范圍: (用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聯(lián)想與探索:
如圖1,將線段A1A2本向右平移1個單位長度至B1B2,得到封閉圖形A1A2B2B1(即陰影部分),在圖2中,將折線A1A2A3向右平移1個單位長度至B1B2B3,得到封閉圖形A1A2A3B3B2B1(即陰影部分).
(1)在圖3中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位長度,從而得到一個封閉圖形,并用陰影表示;
(2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積(設(shè)長方形水平方向長均為a,豎直方向長均為b) :S1= ,S2= ,S3= ;
(3)如圖4,在一塊長方形草地上,有一條彎曲的小路(小路任何地方的水平寬度都是2個單位長度,長方形水平方向長為a,豎直方向長為b),則空白部分表示的草地面積是多少?
(4)如圖5,若在(3)中的草地上又有一條橫向的曲小路(小路任何地方的寬度都是1個單位長度),則空白部分表示的草地面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校后勤人員到一家文具店給九年級的同學(xué)購買考試用文具包,文具店規(guī)定一次購買400個以上,可享受8折優(yōu)惠.若給九年級學(xué)生每人購買一個,不能享受8折優(yōu)惠,需付款1936元;若多買88個,就可享受8折優(yōu)惠,同樣只需付款1936元.請問該學(xué)校九年級學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:代數(shù)式A=2x2﹣2x﹣1,代數(shù)式B=﹣x2+xy+1,代數(shù)式M=4A﹣(3A﹣2B)
(1)當(dāng)(x+1)2+|y﹣2|=0時,求代數(shù)式M的值;
(2)若代數(shù)式M的值與x的取值無關(guān),求y的值;
(3)當(dāng)代數(shù)式M的值等于5時,求整數(shù)x、y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形容器中,高為1.2m,底面周長為1m,在容器內(nèi)壁離容器底部0.3m的點B處有一蚊子,此時一只壁虎正好在容器外壁,離容器上沿0.3m與蚊子相對的點A處,則壁虎捕捉蚊子的最短距離為 m(容器厚度忽略不計).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當(dāng)點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有三張正面分別標(biāo)有數(shù)字:﹣1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中抽出一張記下數(shù)字,放回洗勻后再從中隨機抽出一張記下數(shù)字.
(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結(jié)果;
(2)將第一次抽出的數(shù)字作為點的橫坐標(biāo)x,第二次抽出的數(shù)字作為點的縱坐標(biāo)y,求點(x,y)落在雙曲線上y= 上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:
設(shè)(其中均為整數(shù)),則有.
∴.這樣小明就找到了一種把部分的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
當(dāng)均為正整數(shù)時,若,用含m、n的式子分別表示,得= ,= ;
(2)利用所探索的結(jié)論,找一組正整數(shù),填空: + =( + )2;
(3)若,且均為正整數(shù),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com