【題目】(1)課本情境:如圖,已知矩形AOBC,AB=6cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動(dòng),直到點(diǎn)O為止;動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),與點(diǎn)P同時(shí)結(jié)束運(yùn)動(dòng),出發(fā) 時(shí),點(diǎn)P和點(diǎn)Q之間的距離是10cm;
(2)逆向發(fā)散:當(dāng)運(yùn)動(dòng)時(shí)間為2s時(shí),P,Q兩點(diǎn)的距離為多少?當(dāng)運(yùn)動(dòng)時(shí)間為4s時(shí),P,Q兩點(diǎn)的距離為多少?
(3)拓展應(yīng)用:若點(diǎn)P沿著AO→OC→CB移動(dòng),點(diǎn)P,Q分別從A,C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C移動(dòng)到點(diǎn)B停止時(shí),點(diǎn)P隨點(diǎn)Q的停止而停止移動(dòng),求經(jīng)過多長(zhǎng)時(shí)間△POQ的面積為12cm2?
【答案】(1)或 (2); (3)或
【解析】
(1)過點(diǎn)P作PE⊥BC于E,得到AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,利用勾股定理得到方程,故可求解;
(2)根據(jù)運(yùn)動(dòng)時(shí)間求出EQ、PE,利用勾股定理即可求解;
(3) 分當(dāng)點(diǎn)P在AO上時(shí),當(dāng)點(diǎn)P在OC上時(shí)和當(dāng)點(diǎn)P在CB上時(shí),根據(jù)三角形的面積公式列出方程即可求解.
解:(1)設(shè)運(yùn)動(dòng)時(shí)間為t秒時(shí),如圖,過點(diǎn)P作PE⊥BC于E,
由運(yùn)動(dòng)知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,
∵點(diǎn)P和點(diǎn)Q之間的距離是10 cm,
∴62+(16﹣5t)2=100,
解得t1=,t2=,
∴t=或.
故答案為或
(2)t=2時(shí),由運(yùn)動(dòng)知AP=3×2=6 cm,CQ=2×2=4 cm,
∴四邊形APEB是矩形,
∴PE=AB=6,BE=6,
∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,
根據(jù)勾股定理得PQ=,
∴當(dāng)t=2 s時(shí),P,Q兩點(diǎn)的距離為6 cm;
當(dāng)t=4 s時(shí),由運(yùn)動(dòng)知AP=3×4=12 cm,CQ=2×4=8cm,
∴四邊形APEB是矩形,
∴PE=AB=6,BQ=8,CE=OP=4
∴EQ
根據(jù)勾股定理得PQ=,
P,Q兩點(diǎn)的距離為2cm.
(3)點(diǎn)Q從C點(diǎn)移動(dòng)到B點(diǎn)所花的時(shí)間為16÷2=8s,
當(dāng)點(diǎn)P在AO上時(shí),S△POQ===12,
解得t=4.
當(dāng)點(diǎn)P在OC上時(shí),S△POQ===12,
解得t=6或﹣(舍棄).
當(dāng)點(diǎn)P在CB上時(shí),S△POQ===12,
解得t=18>8(不符合題意舍棄),
綜上所述,經(jīng)過4 s或6 s時(shí),△POQ的面積為12 cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=,E是CD邊上的中點(diǎn),P是BC邊上的一點(diǎn),且BP=2CP,連接EP并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)F.
(1)求BF;
(2)判斷EB是否平分∠AEC,并說明理由;
(3)連接AP,不添加輔助線,試證明△AEP≌△FBP,直接寫出一種經(jīng)過兩次變換的方法使得△AEP與△FBP重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了做好開學(xué)準(zhǔn)備,某校共購(gòu)買了20桶A、B兩種桶裝消毒液,進(jìn)行校園消殺,以備開學(xué).已知A種消毒液300元/桶,每桶可供2 000米2的面積進(jìn)行消殺,B種消毒液200元/桶,每桶可供1 000米2的面積進(jìn)行消殺.
(1)設(shè)購(gòu)買了A種消毒液x桶,購(gòu)買消毒液的費(fèi)用為y元,寫出y與x之間的關(guān)系式,并指出自變量x的取值范圍;
(2)在現(xiàn)有資金不超過5 300元的情況下,求可消殺的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解本校學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,課題小組隨機(jī)選取該校部分學(xué)生進(jìn)行了問卷調(diào)査(問卷調(diào)査表如圖1所示),并根據(jù)調(diào)查結(jié)果繪制了圖2、圖3兩幅統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問題.
(1)本次接受問卷調(diào)查的學(xué)生有________名.
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)扇形統(tǒng)計(jì)圖中B類節(jié)目對(duì)應(yīng)扇形的圓心角的度數(shù)為________.
(4)該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果估計(jì)該校最喜愛新聞節(jié)目的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正方形ABCD邊上一點(diǎn),以O為圓心,OB為半徑畫圓與AD交于點(diǎn)E,過點(diǎn)E作⊙O的切線交CD于F,將△DEF沿EF對(duì)折,點(diǎn)D的對(duì)稱點(diǎn)D'恰好落在⊙O上.若AB=6,則OB的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完全平方公式是初中數(shù)學(xué)的重要公式之一:,完全平方公式既可以用來進(jìn)行整式計(jì)算又可以用來進(jìn)行分解因式,在學(xué)習(xí)中芳芳同學(xué)發(fā)現(xiàn)也可以用完全平方公式進(jìn)行分解因式,;根據(jù)以上發(fā)現(xiàn)解決問題
(1)寫出一個(gè)上面相同的式子,并進(jìn)行分解因式;
(2)若,請(qǐng)用,表示,
(3)如圖在中,,,,延長(zhǎng)至點(diǎn),使,求的長(zhǎng)(參考上面提供的方法把結(jié)果進(jìn)行化簡(jiǎn))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了考查學(xué)生的綜合素質(zhì),某市決定:九年級(jí)畢業(yè)生統(tǒng)一參加中考實(shí)驗(yàn)操作考試,根據(jù)今年的實(shí)際情況,中考實(shí)驗(yàn)操作考試科目為:(物理)、(化學(xué))、(生物),每科試題各為道,考生隨機(jī)抽取其中道進(jìn)行考試.小明和小麗是某校九年級(jí)學(xué)生,需參加實(shí)驗(yàn)考試.
(1)小明抽到化學(xué)實(shí)驗(yàn)的概率為 ;
(2)若只從考試科目考慮,小明和小麗抽到不同科目的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場(chǎng)銷售一批襯衫,每天可售出20件,每件盈利40元,為了擴(kuò)大銷售,減少庫存,決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果一件襯衫每降價(jià)1元,每天可多售出2件.
(1)若商場(chǎng)每天要盈利1200元,每件應(yīng)降價(jià)多少元?
(2)設(shè)每件降價(jià)x元,每天盈利y元,每件降價(jià)多少元時(shí),商場(chǎng)每天的盈利達(dá)到最大?盈利最大是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com