【題目】如圖,在矩形ABCD中,AB=8,AD=12,經(jīng)過(guò)A,D兩點(diǎn)的⊙O與邊BC相切于點(diǎn)E,則⊙O的半徑為( )
A. 4 B. C. 5 D.
【答案】D
【解析】
連結(jié)EO并延長(zhǎng)交AD于F,連接AO,由切線的性質(zhì)得OE⊥BC,再利用平行線的性質(zhì)得到OF⊥AD,則根據(jù)垂徑定理得到AF=DF=AD=6,由題意可證四邊形ABEF為矩形,則EF=AB=8,設(shè)⊙O的半徑為r,則OA=r,OF=8-r,然后在Rt△AOF中利用勾股定理得到(8-r)2+62=r2,再解方程求出r即可.
如圖,連結(jié)EO并延長(zhǎng)交AD于F,連接AO,
∵⊙O與BC邊相切于點(diǎn)E,
∴OE⊥BC,
∵四邊形ABCD為矩形,
∴BC∥AD,
∴OF⊥AD,
∴AF=DF=AD=6,
∵∠B=∠DAB=90°,OE⊥BC,
∴四邊形ABEF為矩形,
∴EF=AB=8,
設(shè)⊙O的半徑為r,則OA=r,OF=8-r,
在Rt△AOF中,∵OF2+AF2=OA2,
∴(8-r)2+62=r2,
解得r=,
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知A(2,0),B(1,-1),將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為(0°<<135°).記點(diǎn)A的對(duì)應(yīng)點(diǎn)為A1,若點(diǎn)A1與點(diǎn)B的距離為,則為( ).
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家八縱八橫高鐵網(wǎng)絡(luò)規(guī)劃中“京昆通道”的重要組成部分──西成高鐵于2017年12月6日開(kāi)通運(yùn)營(yíng),西安至成都列車運(yùn)行時(shí)間由14小時(shí)縮短為3.5小時(shí).張明和王強(qiáng)相約從成都坐高鐵到西安旅游.如圖,張明家(記作A)在成都東站(記作B)南偏西30°的方向且相距4000米,王強(qiáng)家(記作C)在成都東站南偏東60°的方向且相距3000米,則張明家與王強(qiáng)家的距離為( 。
A. 6000米 B. 5000米 C. 4000米 D. 2000米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB為⊙O直徑,BC為⊙O切線,切點(diǎn)為B,CO平行于弦AD,作直線DC.
(1)求證:DC為⊙O切線;
(2) 若AD·OC=8,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖AB是⊙O的直徑,PA與⊙O相切于點(diǎn)A,BP與⊙O相交于點(diǎn)D,C為⊙O上的一點(diǎn),分別連接CB、CD,∠BCD=60°.
(1)求∠ABD的度數(shù);
(2)若AB=6,求PD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<360°),得到矩形AEFG.
(1)如圖,當(dāng)點(diǎn)E在BD上時(shí).求證:FD=CD;
(2)當(dāng)α為何值時(shí),GC=GB?畫(huà)出圖形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校環(huán)保社成員想測(cè)量斜坡CD旁一棵樹(shù)AB的高度,他們先在點(diǎn)C處測(cè)得樹(shù)頂B的仰角為60°,然后在坡頂D測(cè)得樹(shù)頂B的仰角為30°,已知DE⊥EA,斜坡CD的長(zhǎng)度為30m,DE的長(zhǎng)為15m,則樹(shù)AB的高度是_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,AB與⊙O相切于點(diǎn)A.四邊形ABCD是平行四邊形,BC交⊙O于點(diǎn)E.
(1)證明直線CD與⊙O相切;
(2)若⊙O的半徑為5 cm,弦CE的長(zhǎng)為8 cm,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時(shí)成立的是
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com