【題目】我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”(如圖(1)所示).圖(2)由弦圖變化得到,它是由八個(gè)全等的直角三角形拼接而成的記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若EF=4,則S1+S2+S3的值是( 。
A.32B.38C.48D.80
【答案】C
【解析】
根據(jù)八個(gè)直角三角形全等,以及三個(gè)正方形組合,得出CG=KG,CF=DG=KF,再根據(jù)S1=(CG+DG)2 ,S2=GF2 ,S3=(KF﹣NF)2 S1+S2+S3=3EF2 求出EF
解:∵八個(gè)直角三角形全等,四邊形ABCD,EFGH,MNKT是正方形,
∴CG=KG,CF=DG=KF
∴S1=(CG+DG)2
=CG2+DG2+2CGDG
=GF2+2CGDG,
S2=GF2=EF2,
S3=(KF﹣NF)2=KF2+NF2﹣2KFNF,
∴S1+S2+S3=GF2+2CGDG+GF2+KF2+NF2﹣2KFNF=3GF2=3EF2=48,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,邊長(zhǎng)為1的正方形網(wǎng)格中,的三個(gè)頂點(diǎn)、、都在格點(diǎn)上.
(1)作關(guān)于關(guān)于軸的對(duì)稱圖形,(其中、、的對(duì)稱點(diǎn)分別是、、),并寫(xiě)出點(diǎn)坐標(biāo);
(2)為軸上一點(diǎn),請(qǐng)?jiān)趫D中畫(huà)出使的周長(zhǎng)最小時(shí)的點(diǎn)(不寫(xiě)畫(huà)法,保留畫(huà)圖痕跡),并直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷售櫻桃,已知櫻桃的進(jìn)價(jià)為15元/千克,如果售價(jià)為20元/千克,那么每天可售出250千克,如果售價(jià)為25元/千克,那么每天可售出200千克,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價(jià)x(元/千克)之間 存在一次函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若該超市每天要獲得利潤(rùn)810元,同時(shí)又要讓消費(fèi)者得到實(shí)惠,則售價(jià)x應(yīng)定于多少元?
(3)若櫻桃的售價(jià)不得高于28元/千克,請(qǐng)問(wèn)售價(jià)定為多少時(shí),該超市每天銷售櫻桃所獲的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明設(shè)計(jì)的“作平行四邊形ABCD的邊AB的中點(diǎn)”的尺規(guī)作圖過(guò)程.
已知:平行四邊形ABCD.
求作:點(diǎn)M,使點(diǎn)M 為邊AB 的中點(diǎn).
作法:如圖,
①作射線DA;
②以點(diǎn)A 為圓心,BC長(zhǎng)為半徑畫(huà)弧,
交DA的延長(zhǎng)線于點(diǎn)E;
③連接EC 交AB于點(diǎn)M .
所以點(diǎn)M 就是所求作的點(diǎn).
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形 (保留作圖痕跡);
(2)完成下面的證明.
證明:連接AC,EB.
∵四邊形ABCD 是平行四邊形,
∴AE∥BC.
∵AE= ,
∴四邊形EBCA 是平行四邊形( )(填推理的依據(jù)) .
∴AM =MB ( )(填推理的依據(jù)) .
∴點(diǎn)M 為所求作的邊AB的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P和圖形W的“中點(diǎn)形”的定義如下:對(duì)于圖形W上的任意一點(diǎn)Q,連結(jié)PQ,取PQ的中點(diǎn),由所以這些中點(diǎn)所組成的圖形,叫做點(diǎn)P和圖形W的“中點(diǎn)形”.
已知C(-2,2),D(1,2),E(1,0),F(-2,0).
(1)若點(diǎn)O和線段CD的“中點(diǎn)形”為圖形G,則在點(diǎn),,中,在圖形G上的點(diǎn)是 ;
(2)已知點(diǎn)A(2,0),請(qǐng)通過(guò)畫(huà)圖說(shuō)明點(diǎn)A和四邊形CDEF的“中點(diǎn)形”是否為四邊形?若是,寫(xiě)出四邊形各頂點(diǎn)的坐標(biāo),若不是,說(shuō)明理由;
(3)點(diǎn)B為直線y=2x上一點(diǎn),記點(diǎn)B和四邊形CDEF的中點(diǎn)形為圖形M,若圖形M與四邊形CDEF有公共點(diǎn),直接寫(xiě)出點(diǎn)B的橫坐標(biāo)b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B=90°,E是AB上的一點(diǎn),且AE=BC,∠1=∠2.
求證:△CED是等腰直角三角形
證明:∵∠1=∠2( )
∴EC= (在一個(gè)三角形中,等角對(duì)等邊)
∵∠A=∠B=90°,AE=BC
∴△AED≌△BCE( )
∴∠AED=∠ ( )
∵∠BCE+∠BEC=90°
∠ +∠BEC=90°(等量代換)
∴∠DEC=90°.
∴△CED是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有四根長(zhǎng)度分別為3,4,5,x(x為正整數(shù))的木棒,從中任取三根,首尾順次相接都能組成一個(gè)三角形則組成的三角形的周長(zhǎng)( )
A.最小值是11B.最小值是12C.最大值是14D.最大值是15
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y=的圖象上.若點(diǎn)B在反比例函數(shù)y=的圖象上,則k的值為( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】深圳市民中心廣場(chǎng)上有旗桿如圖①所示,某學(xué)校興趣小組測(cè)量了該旗桿的高度,如圖②,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測(cè)得落在平臺(tái)上的影長(zhǎng)BC為16米,落在斜坡上的影長(zhǎng)CD為8米,AB⊥BC;同一時(shí)刻,太陽(yáng)光線與水平面的夾角為45°.1米的標(biāo)桿EF豎立在斜坡上的影長(zhǎng)FG為2米,求旗桿的高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com