(2012•郴州)如圖,D、E分別是△ABC的邊AB、AC上的點(diǎn),連接DE,要使△ADE∽△ACB,還需添加一個(gè)條件
此題答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等
此題答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等
(只需寫(xiě)一個(gè)).
分析:由∠A是公共角,利用有兩角對(duì)應(yīng)相等的三角形相似,即可得可以添加∠ADE=∠C或∠AED=∠B;又由兩組對(duì)應(yīng)邊的比相等且?jiàn)A角對(duì)應(yīng)相等的兩個(gè)三角形相似,即可得D可以添加AD:AC=AE:AB或AD•AB=AE•AC,繼而求得答案.
解答:解:∵∠A是公共角,
∴當(dāng)∠ADE=∠C或∠AED=∠B時(shí),△ADE∽△ACB(有兩角對(duì)應(yīng)相等的三角形相似),
當(dāng)AD:AC=AE:AB或AD•AB=AE•AC時(shí),△ADE∽△ACB(兩組對(duì)應(yīng)邊的比相等且?jiàn)A角對(duì)應(yīng)相等的兩個(gè)三角形相似),
∴要使△ADE∽△ACB,還需添加一個(gè)條件:答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等.
故答案為:此題答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等.
點(diǎn)評(píng):此題考查了相似三角形的判定.此題屬于開(kāi)放題,難度不大,注意掌握有兩角對(duì)應(yīng)相等的三角形相似與兩組對(duì)應(yīng)邊的比相等且?jiàn)A角對(duì)應(yīng)相等的兩個(gè)三角形相似定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•郴州)如圖是由5個(gè)相同的小正方體組成的立體圖形,它的俯視圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•郴州)如圖,已知AB∥CD,∠1=60°,則∠2=
120
120
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•郴州)如圖,已知拋物線y=ax2+bx+c經(jīng)過(guò)A(4,0),B(2,3),C(0,3)三點(diǎn).
(1)求拋物線的解析式及對(duì)稱(chēng)軸.
(2)在拋物線的對(duì)稱(chēng)軸上找一點(diǎn)M,使得MA+MB的值最小,并求出點(diǎn)M的坐標(biāo).
(3)在拋物線上是否存在一點(diǎn)P,使得以點(diǎn)A、B、C、P四點(diǎn)為頂點(diǎn)所構(gòu)成的四邊形為梯形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•郴州)如圖,在菱形ABCD中,對(duì)角線AC=6,BD=8,則這個(gè)菱形的邊長(zhǎng)為
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案