【題目】如圖,在ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點D、E,過點DDFAC于點F.

(1)若⊙O的半徑為3,CDF=15°,求陰影部分的面積;

(2)求證:DF是⊙O的切線;

(3)求證:∠EDF=DAC.

【答案】(1)陰影部分的面積為3π﹣;(2)證明見解析;(3)證明見解析.

【解析】(1)連接OE,過OOMACM,求出AE、OM的長和∠AOE的度數(shù),分別求出AOE和扇形AOE的面積,即可求出答案;

(2)連接OD,求出ODDF,根據(jù)切線的判定求出即可;

(3)連接BE,求出∠FDC=EBC,FDC=EDF,即可求出答案.

(1)解: 連接OE,過OOMACM,則∠AMO=90°,

DFAC,

∴∠DFC=90°,

∵∠FDC=15°,

∴∠C=180°-90°-15°=75°,

AB=AC,

∴∠ABC=C=75°,

∴∠BAC=180°-ABCC=30°,

OM=OA=×3=,AM=OM=,

OA=OE,OMAC,

AE=2AM=3

∴∠BAC=AEO=30°,

∴∠AOE=180°-30°-30°=120°,

∴陰影部分的面積S=S扇形AOE-SAOE=;

(2)證明:連接OD,

AB=AC,OB=OD,

∴∠ABC=C,ABC=ODB,

∴∠ODB=C,

ACOD,

DFAC,

DFOD,

ODO,

DF是⊙O的切線;

(3)證明:連接BE,

AB為⊙O的直徑,

∴∠AEB=90°,

BEAC,

DFAC,

BEDF,

∴∠FDC=EBC,

∵∠EBC=DAC,

∴∠FDC=DAC,

A、B、D、E四點共圓,

∴∠DEF=ABC,

∵∠ABC=C,

∴∠DEC=C,

DFAC,

∴∠EDF=FDC,

∴∠EDF=DAC.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,都是等腰直角三角形,點、、都在函數(shù)的圖象上,斜邊、、都在x軸上則點的坐標是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx﹣3x軸交于點A(﹣3,0)和點B(1,0),交y軸于點C,過點CCDx軸,交拋物線于點D.

(1)求拋物線的解析式;

(2)若直線y=m(﹣3<m<0)與線段ADBD分別交于G、H兩點,過G點作EGx軸于點E,過點HHFx軸于點F,求矩形GEFH的最大面積;

(3)若直線y=kx+1將四邊形ABCD分成左、右兩個部分,面積分別為S1S2,且S1S2=4:5,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解下列方程,其中應(yīng)在兩端同時加上4的是(

A B C D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是⊙的直徑,是弦,,.

(1)求證:是⊙的切線:

(2),求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AEED,DFDC14,連接EF并延長交BC的延長線于點G

1)求證:△ABE∽△DEF;

2)若正方形的邊長為10,求BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑是AB=12cm,AM、BN是它的兩條切線,DE與⊙O相切于點E,并與AM、BN分別相交于DC兩點,設(shè)AD=x,BC=y,則yx的函數(shù)解析式為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.

1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;

2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.

查看答案和解析>>

同步練習冊答案