【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況探索結(jié)論
當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線(xiàn)段AE與的DB大小關(guān)系.請(qǐng)你直接寫(xiě)出結(jié)論:AEDB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AEDB(填“>”,“<”或“=”).理由如下:
如圖2,過(guò)點(diǎn)E作EF∥BC,交AC于點(diǎn)F,(請(qǐng)你完成以下解答過(guò)程)
(3)拓展結(jié)論,設(shè)計(jì)新題
在等邊三角形ABC中,點(diǎn)E在直線(xiàn)AB上,點(diǎn)D在直線(xiàn)BC上,且ED=EC.若△ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng)(請(qǐng)你直接寫(xiě)出結(jié)果).
【答案】
(1)=
(2)=
(3)
解:分為四種情況:
如圖1:
∵AB=AC=1,AE=2,
∴B是AE的中點(diǎn),
∵△ABC是等邊三角形,
∴AB=AC=BC=1,△ACE是直角三角形(根據(jù)直角三角形斜邊的中線(xiàn)等于斜邊的一半),
∴∠ACE=90°,∠AEC=30°,
∴∠D=∠ECB=∠BEC=30°,∠DBE=∠ABC=60°,
∴∠DEB=180°﹣30°﹣60°=90°,
即△DEB是直角三角形.
∴BD=2BE=2(30°所對(duì)的直角邊等于斜邊的一半),
即CD=1+2=3.
如圖2,
過(guò)A作AN⊥BC于N,過(guò)E作EM⊥CD于M,
∵等邊三角形ABC,EC=ED,
∴BN=CN= BC= ,CM=MD= CD,AN∥EM,
∴△BAN∽△BEM,
∴ ,
∵△ABC邊長(zhǎng)是1,AE=2,
∴ = ,
∴MN=1,
∴CM=MN﹣CN=1﹣ = ,
∴CD=2CM=1;
如圖3,
∵∠ECD>∠EBC(∠EBC=120°),而∠ECD不能大于120°,否則△EDC不符合三角形內(nèi)角和定理,
∴此時(shí)不存在EC=ED;
如圖4
∵∠EDC<∠ABC,∠ECB>∠ACB,
又∵∠ABC=∠ACB=60°,
∴∠ECD>∠EDC,
即此時(shí)ED≠EC,
∴此時(shí)情況不存在,
答:CD的長(zhǎng)是3或1.
【解析】解:(1.)答案為:=.
(2.)答案為:=.
證明:在等邊△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,
∵EF∥BC,
∴∠AEF=∠ABC,∠AFE=∠ACB,
∴∠AEF=∠AFE=∠BAC=60°,
∴AE=AF=EF,
∴AB﹣AE=AC﹣AF,
即BE=CF,
∵∠ABC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∵ED=EC,
∴∠EDB=∠ECB,
∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∴∠BED=∠FCE,
在△DBE和△EFC中
,
∴△DBE≌△EFC(SAS),
∴DB=EF,
∴AE=BD.
(1)根據(jù)等邊三角形的性質(zhì)和三角形的內(nèi)角和定理求出∠D=∠ECB=30°,∠ABC=60°,求出∠D=∠DEB=30°,推出DB=BE=AE即可得到答案;(2)作EF∥BC,證出等邊三角形AEF,再證△DBE≌△EFC即可得到答案;(3)分為四種情況:畫(huà)出圖形,根據(jù)等邊三角形性質(zhì)求出符合條件的CD即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某居民小區(qū)的一塊寬為2a米,長(zhǎng)為b米的長(zhǎng)方形空地,為了美化環(huán)境,準(zhǔn)備在這塊長(zhǎng)方形空地的四個(gè)頂點(diǎn)處修建一個(gè)半徑為a米的扇形花臺(tái),然后在花臺(tái)內(nèi)種花,其余種草.
(1)請(qǐng)分別用含a、b的式子表示種花和種草的面積.(答案保留π)
(2)如果建造花臺(tái)及種花費(fèi)用每平方米需要資金100元,種草每平方米需要資金50元,那么美化這塊空地共需資金多少元?(答案保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB交CD于O,OE⊥AB.
(1)若∠EOD=20°,求∠AOC的度數(shù);
(2)若∠AOC:∠BOC=1:2,求∠EOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1) 請(qǐng)畫(huà)出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△ABC;
(2) 請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的△ABC;
(3) 在軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,請(qǐng)畫(huà)出△PAB,并直接寫(xiě)出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,∠BAD、∠ADC的平分線(xiàn)AE、DF分別交BC于點(diǎn)E、F,AE與DF相交于點(diǎn)G.
(1)求證:∠AGD=90°.
(2)若CD=4cm,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=﹣ (x﹣1)2+3與y軸交于點(diǎn)A,頂點(diǎn)為B,對(duì)稱(chēng)軸BC與x軸交于點(diǎn)C.
(1)如圖1.求點(diǎn)A的坐標(biāo)及線(xiàn)段OC的長(zhǎng);
(2)點(diǎn)P在拋物線(xiàn)上,直線(xiàn)PQ∥BC交x軸于點(diǎn)Q,連接BQ.
①若含45°角的直角三角板如圖2所示放置.其中,一個(gè)頂點(diǎn)與點(diǎn)C重合,直角頂點(diǎn)D在BQ上,另一個(gè)頂點(diǎn)E在PQ上.求直線(xiàn)BQ的函數(shù)解析式;
②若含30°角的直角三角板一個(gè)頂點(diǎn)與點(diǎn)C重合,直角頂點(diǎn)D在直線(xiàn)BQ上,另一個(gè)頂點(diǎn)E在PQ上,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)圖形面積的計(jì)算,常?梢缘玫揭恍┯杏玫氖阶,或可以求出一些不規(guī)則圖形的面積.
(1)如圖1,是將幾個(gè)面積不等的小正方形與小長(zhǎng)方形拼成一個(gè)邊長(zhǎng)為a+b+c的正方形,試用不同的方法計(jì)算這個(gè)圖形的面積,你能發(fā)現(xiàn)什么結(jié)論,請(qǐng)寫(xiě)出來(lái).
(2)如圖2,是將兩個(gè)邊長(zhǎng)分別為a和b的正方形拼在一起,B、C、G三點(diǎn)在同一直線(xiàn)上,連接BD和BF,若兩正方形的邊長(zhǎng)滿(mǎn)足a+b=10,ab=20,你能求出陰影部分的面積嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,BD是一條對(duì)角線(xiàn),點(diǎn)P在CD上(與點(diǎn)C,D不重合),連接AP,平移△ADP,使點(diǎn)D移動(dòng)到點(diǎn)C,得到△BCQ,過(guò)點(diǎn)Q作QM⊥BD于M,連接AM,PM(如圖1).
(1)判斷AM與PM的數(shù)量關(guān)系與位置關(guān)系并加以證明;
(2)若點(diǎn)P在線(xiàn)段CD的延長(zhǎng)線(xiàn)上,其它條件不變(如圖2),(1)中的結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊地放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為m cm,寬為n cm)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長(zhǎng)和是( )cm.
A.4m
B.4n
C.2(m+n)
D.4(m﹣n)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com