已知,如圖:△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的長(zhǎng).

解:過(guò)D作DE⊥AB,垂足為E,
∵∠1=∠2,
∴CD=DE=15,
在Rt△BDE中,BE===20,
∵CD=DE,AD=AD,
∴Rt△ACD≌Rt△AED,
∴AB2=AC2+BC2,即(AC+20)2=AC2+(15+25)2,
解得AC=30.
分析:過(guò)D作DE⊥AB,垂足為E,由角平分線的性質(zhì)可知CD=DE,根據(jù)勾股定理可得出BE的長(zhǎng),再判斷出Rt△ACD≌Rt△AED,進(jìn)而可得出AC=AE,根據(jù)勾股定理即可解答.
點(diǎn)評(píng):本題主要考查的是角平分線的性質(zhì)及勾股定理,熟知角平分線的性質(zhì)是解答此題的關(guān)鍵,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BE平分∠ABC,交AD于點(diǎn)M,AN平分∠DAC,交BC于點(diǎn)N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點(diǎn)F,過(guò)F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC是等邊三角形,點(diǎn)D在AB上,點(diǎn)E在AC的延長(zhǎng)線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A.
求:BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線上.
(1)請(qǐng)問(wèn):AB、BD、DC有何數(shù)量關(guān)系?并說(shuō)明理由.
(2)如果∠B=60°,請(qǐng)問(wèn)BD和DC有何數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案