【題目】在平面直角坐標(biāo)系xOy中,直線為一、三象限角平分線.點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)稱為P的一次反射點(diǎn),記作;關(guān)于直線的對(duì)稱點(diǎn)稱為點(diǎn)P的二次反射點(diǎn),記作.例如,點(diǎn)的一次反射點(diǎn)為,二次反射點(diǎn)為.根據(jù)定義,回答下列問(wèn)題:
(1)點(diǎn)的一次反射點(diǎn)為________,二次反射點(diǎn)為__________;
(2)當(dāng)點(diǎn)A在第一象限時(shí),點(diǎn),,中可以是點(diǎn)A的二次反射點(diǎn)的是_________;
(3)若點(diǎn)A在第二象限,點(diǎn),分別是點(diǎn)A的一次、二次反射點(diǎn),△為等邊三角形,求射線OA與x軸所夾銳角的度數(shù).
【答案】(1),; (2)N點(diǎn); (3)射線OA與x軸所夾銳角為或.
【解析】
(1)根據(jù)反射的定義求解;(2)根據(jù)反射定義可知點(diǎn)A的二次反射點(diǎn)在第四限項(xiàng);(3)根據(jù)反射定義得點(diǎn)均在第一象限. △為等邊三角形,關(guān)于OB對(duì)稱,故;①若點(diǎn)位于直線l的上方,如圖1所示,此時(shí)②若點(diǎn)位于直線l的上下方,如圖2所示,此時(shí)
解:(1),;
(2)N點(diǎn);
(3)∵點(diǎn)A在第二象限,
∴點(diǎn)均在第一象限.
∵△為等邊三角形,關(guān)于OB對(duì)稱,
∴
分類(lèi)討論:
①若點(diǎn)位于直線l的上方,如圖1所示,
此時(shí)
因此射線OA與x軸所夾銳角為;
②若點(diǎn)位于直線l的上下方,如圖2所示,
此時(shí)
因此射線OA與x軸所夾銳角為;
綜上所述,射線OA與x軸所夾銳角為或.
圖1 圖2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市將實(shí)行居民生活用電階梯電價(jià)方案,如下表,圖中折線反映了每戶居民每月電費(fèi)(元)與用電量(度)間的函數(shù)關(guān)系.
檔次 | 第一檔 | 第二檔 | 第三檔 |
每月用電量(度) |
(1)小王家某月用電度,需交電費(fèi)___________元;
(2)求第二檔電費(fèi)(元)與用電量(度)之間的函數(shù)關(guān)系式;
(3)小王家某月用電度,交納電費(fèi)元,請(qǐng)你求出第三檔每度電費(fèi)比第二檔每度電費(fèi)多多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商人經(jīng)營(yíng)甲、乙兩種商品,每件甲種商品的利潤(rùn)率為,每件乙種商品的利潤(rùn)率為,當(dāng)售出的乙種商品的件數(shù)比甲種商品的件數(shù)多時(shí),這個(gè)商人得到的總利潤(rùn)率是;當(dāng)售出的乙種商品的件數(shù)比甲種商品的件數(shù)少時(shí),這個(gè)商人得到的總利潤(rùn)率是__________. (注:利潤(rùn)率,總利潤(rùn)率)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC邊上的動(dòng)點(diǎn)(點(diǎn)D與B,C不重合),△ABD和△ACD的面積分別表示為S1和S2,下列條件不能說(shuō)明AD是△ABC角平分線的是( )
A.BD=CDB.∠ADB=∠ADCC.S1=S2D.AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于代數(shù)式,不同的表達(dá)形式能表現(xiàn)出它的不同性質(zhì).例如代數(shù)式,若將其寫(xiě)成的形式,就能看出不論字母x取何值,它都表示正數(shù);若將它寫(xiě)成的形式,就能與代數(shù)式B=建立聯(lián)系.下面我們改變x的值,研究一下A,B兩個(gè)代數(shù)式取值的規(guī)律:
x | -2 | -1 | 0 | 1 | 2 | 3 |
10 | 5 | 2 | 1 | 5 | ||
17 | 10 | 5 |
(1)完成上表;
(2)觀察表格可以發(fā)現(xiàn):
若x=m時(shí),,則x=m+1時(shí),.我們把這種現(xiàn)象稱為代數(shù)式A參照代數(shù)式B取值延后,此時(shí)延后值為1.
①若代數(shù)式D參照代數(shù)式B取值延后,相應(yīng)的延后值為2,求代數(shù)式D;
②已知代數(shù)式參照代數(shù)式取值延后,請(qǐng)直接寫(xiě)出b-c的值:________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y= x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一分鐘投籃測(cè)試規(guī)定:滿分為分,成績(jī)達(dá)到分及以上為合格,成績(jī)達(dá)到分及以上為優(yōu)秀.甲、乙兩組各名學(xué)生的某次測(cè)試成績(jī)?nèi)缦拢?/span>
成績(jī)(分) | ||||||||||
甲組(人) | ||||||||||
乙組(人) |
請(qǐng)補(bǔ)充完成下面的成績(jī)分析表:
統(tǒng)計(jì)量 | 平均分 | 方差 | 中位數(shù) | 合格率 | 優(yōu)秀率 |
甲組 | ________ | ||||
乙組 | ________ | ________ |
你認(rèn)為甲、乙兩組哪一組的投籃成績(jī)較好?請(qǐng)寫(xiě)出兩條支持你的觀點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)(,是常數(shù),)的圖象過(guò),兩點(diǎn).
(1)在圖中畫(huà)出該一次函數(shù)并求其表達(dá)式;
(2)若點(diǎn)在該一次函數(shù)圖象上,求的值;
(3)把的圖象向下平移3個(gè)單位后得到新的一次函數(shù)圖象,在圖中畫(huà)出新函數(shù)圖形,并直接寫(xiě)出新函數(shù)圖象對(duì)應(yīng)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).
(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點(diǎn).如圖(2)
①求∠CPD的度數(shù);
②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com