【題目】如圖,在四邊形ABCD中,AD//BC,∠A=∠C,CD=2AD,BE⊥AD于點E,F為CD的中點,連接EF、BF.
(1)求證:四邊形ABCD是平行四邊形;
(2)求證:BF平分∠ABC;
(3)請判斷△BEF的形狀,并證明你的結論.
【答案】(1)見解析;(2)見解析;(3)ΔBEF為等腰三角形,見解析.
【解析】
(1)由平行線的性質(zhì)得出∠A+∠ABC=180°,由已知得出∠C+∠ABC=180°,證出AB//BC,即可得出四邊形ABCD是平行四邊形;
(2)由平行四邊形的性質(zhì)得出BC=AD,AB//CD,得出∠CFB=∠ABF,由已知得出CF=BC,得出∠CFB=∠CBF,證出∠ABF=∠CBF即可;
(3)作FG⊥BE于G,證出FG/AD//BC,得出EG=BG,由線段垂直平分線的性質(zhì)得出EF=BF即可.
解:(1)證明:∵AD∥BC,
∴∠A+∠ABC=180°:
∵∠A=∠C
∴∠C+∠ABC=180°
∴AB∥CD
∴四邊形ABCD是平行四邊形
(2)證明:
∵F點為CD中點
∴CD=2CF
∴CD=2AD
∴CF=AD=BC
∴∠CFB=∠CBF
∴CD∥AB
∴∠CFB=∠FBA
∴∠FBA=∠CBF
∴BF平分∠ABC
(3)ΔBEF為等腰三角形
理由:如圖,延長EF交B延長線于點G
∴DA∥BG
∴∠G=∠DEF
∵F為DC中點
∴DF=CF
又∵∠DFE=∠CFG
∴ΔDFE≌ΔCFG(AAS)
∴FE=FG
∵AD∥BC,BE⊥AD
∴BE⊥CD
∴∠EBG=90°
在RtΔEBG中,F為BG中點
∴BF=EG=EF
∴ΔBEF為等腰三角形。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知DE是直角梯形ABCD的高,將△ADE沿DE翻折,腰AD恰好經(jīng)過腰BC的中點,則AE:BE等于( )
A.2:1 B.1:2 C.3:2 D.2:3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1所示,在Rt△ABC中,∠ACB=90°,AC=BC,點D在斜邊AB上,點E在直角邊BC上,若∠CDE=45°,求證:△ACD∽△BDE.
(2)如圖2所示,在矩形ABCD中,AB=4cm,BC=10cm,點E在BC上,連接AE,過點E作EF⊥AE交CD(或CD的延長線)于點F.
①若BE:EC=1:9,求CF的長;
②若點F恰好與點D重合,請在備用圖上畫出圖形,并求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的內(nèi)接四邊形ABCD中,AC,BD是它的對角線,AC的中點I是△ABD的內(nèi)心.求證:
(1)OI是△IBD的外接圓的切線;
(2)AB+AD=2BD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①有一個角是的等腰三角形是等邊三角形;②如果三角形的一個外角平分線平行三角形的一邊,那么這個三角形是等腰三角形;③三角形三邊的垂直平分線的交點與三角形三個頂點的距離相等;④有兩個角相等的等腰三角形是等邊三角形.其中正確的個數(shù)有( )
A. 個B. 個C. 個D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD,AB=6,BC=8,E,F(xiàn)分別是AB,BC的中點,AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果經(jīng)銷商上月份銷售一種新上市的水果,平均售價為10元/千克,月銷售量為1000千克.經(jīng)市場調(diào)查,若將該種水果價格調(diào)低至x元/千克,則本月份銷售量y(千克)與x(元/千克)之間符合一次函數(shù)關系,并且得到了表中的數(shù)據(jù):
價格x(元/千克) | 7 | 5 |
價格y(千克) | 2000 | 4000 |
(1)求y與x之間的函數(shù)解析式;
(2)已知該種水果上月份的成本價為5元/千克,本月份的成本價為4元/千克,要使本月份銷售該種水果所獲利潤比上月份增加20%,同時又要讓顧客得到實惠,那么該種水果價格每千克應調(diào)低至多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com