【題目】筒車是我國古代發(fā)明的一種水利灌溉工具.如圖1,明朝科學家徐光啟在《農(nóng)政全書》中用圖畫描繪了筒車的工作原理.如圖2,筒車盛水桶的運行軌跡是以軸心O為圓心的圓.已知圓心在水面上方,且圓被水面截得的弦AB長為6米,∠OAB=41.3°,若點C為運行軌道的最高點(C,O的連線垂直于AB),求點C到弦AB所在直線的距離.(參考數(shù)據(jù):sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上的A、B、C三點所表示的數(shù)分別為a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,則下列選項中,滿足A、B、C三點位置關系的數(shù)軸為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個三角形的構造法則:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左、右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個數(shù)1,2,1,恰好對應(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個數(shù)1,3,3,1,恰好對應著(a+b)3=a3+3a2b+3ab2+b2展開式中的系數(shù)等.
(1)(a+b)n展開式中項數(shù)共有 項.
(2)寫出(a+b)5的展開式:(a+b)5= .
(3)利用上面的規(guī)律計算:25﹣5×24+10×23﹣10×22+5×2﹣1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=2x2+bx﹣1(b為常數(shù)).
(1)若拋物線經(jīng)過點(1,2b),求b的值;
(2)求證:無論b取何值,二次函數(shù)y=2x2+bx﹣1圖象與x軸必有兩個交點;
(3)若平行于x軸的直線與該二次函數(shù)的圖象交于點A,B,且點A,B的橫坐標之和大于1,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與坐標軸交點分別為,,,作直線BC.
求拋物線的解析式;
點P為拋物線上第一象限內(nèi)一動點,過點P作軸于點D,設點P的橫坐標為,求的面積S與t的函數(shù)關系式;
條件同,若與相似,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標為A(﹣2,3),B(﹣3,2),C(﹣1,1).
(1)若將△ABC向右平移3個單位長度,再向上平移1個單位長度,請畫出平移后的△A1B1C1;
(2)畫出△A1B1C1繞原點順時針旋90°后得到 的△A2B2C2;
(3)若△A′B′C′與△ABC是中心對稱圖形,則對稱中心的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB的中線,E為邊BC的中點,連接DE,過點E作EF∥CD交AC的延長線于點F.若AB=13,BC=12,則四邊形CDEF的周長為________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應點,點B′與點B是對應點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com