將正方形ABCD繞中心O順時(shí)針旋轉(zhuǎn)角得到正方形,如圖1所示.

(1)當(dāng)=45時(shí)(如圖2),若線段與邊的交點(diǎn)為,線段的交點(diǎn)為,可得下列結(jié)論成立 ①;②,試選擇一個(gè)證明.

(2)當(dāng)時(shí),第(1)小題中的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.

(3)在旋轉(zhuǎn)過(guò)程中,記正方形AB邊相交于P,Q兩點(diǎn),探究的度數(shù)是否發(fā)生變化?如果變化,請(qǐng)描述它與之間的關(guān)系;如果不變,請(qǐng)直接寫出的度數(shù).

(1)若證明①

當(dāng)=45時(shí),即,又

,同理

             2分

Rt和Rt中,有

    

若證明②

法一證明:連結(jié),則

     是兩個(gè)正方形的中心,∴

    

          2分

          2分

(2)成立                       1分

證明如下:法一證明:連結(jié),則

     是兩個(gè)正方形的中心,∴

    

          2分

          2分

(3)在旋轉(zhuǎn)過(guò)程中,的度數(shù)不發(fā)生變化,               1分

                                           2分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、正方形ABCD在平面直角坐標(biāo)系中的位置如圖,將正方形ABCD繞D點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°后,B點(diǎn)到達(dá)的位置坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),每個(gè)小方格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.正方形ABCD頂點(diǎn)都在格點(diǎn)上,其中,點(diǎn)A的坐標(biāo)為(1,1).
(1)若將正方形ABCD繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)B到達(dá)點(diǎn)B1,點(diǎn)C到達(dá)點(diǎn)C1,點(diǎn)D到達(dá)點(diǎn)D1,求點(diǎn)B1、C1、D1的坐標(biāo).
(2)若線段AC1的長(zhǎng)度與點(diǎn)D1的橫坐標(biāo)的差恰好是一元二次方程x2+ax+1=0的一個(gè)根,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•煙臺(tái))正方形ABCD在坐標(biāo)系中的位置如圖所示,將正方形ABCD繞D點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°后,B點(diǎn)到達(dá)的位置坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•三元區(qū)質(zhì)檢)把邊長(zhǎng)為a的正方形ABCD和正方形AEFG按圖①放置,點(diǎn)B、D分別在AE、AG上,將正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0°<α<45°).
(1)連接BE、DG,如圖②所示,求證:BE=DG;
(2)連接AF、BD,BC交AF于P,CD交AG于Q,連接PQ,如圖③所示.
①當(dāng)PQ∥BD時(shí),求證:∠PAB=∠QAD;
②求證:旋轉(zhuǎn)過(guò)程中△PCQ的周長(zhǎng)等于定值2a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀下列材料:如圖(1)在四邊形ABCD中,若AB=AD,BC=CD,則把這樣的四邊形稱之為“箏形”.
解答問(wèn)題:如圖(2)將正方形ABCD繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)一定角度后,得到正方形GBEF,邊AD與EF相交于點(diǎn)H.
請(qǐng)你判斷四邊形ABEH是否是“箏形”,說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案