【題目】如圖,AB是⊙O的直徑,C為AB延長(zhǎng)線(xiàn)上一點(diǎn),過(guò)點(diǎn)C作⊙O的切線(xiàn)CD,D為切點(diǎn),點(diǎn)F是弧AD的中點(diǎn),連接OF并延長(zhǎng)交CD于點(diǎn)E,連接BD,BF.
(1)求證:BD∥OE;
(2)若OE=3,tanC=,求⊙O的半徑.
【答案】(1)證明見(jiàn)解析;(2)⊙O的半徑的長(zhǎng)3.
【解析】
(1)如圖,由圓的半徑相等可得∠1=∠3,再由圓周角定理可得∠1=∠2,從而可得∠2=∠3,繼而可得結(jié)論;
(2)連接OD,如圖,根據(jù)切線(xiàn)的性質(zhì)可得OD⊥CD,根據(jù)tanC=,設(shè)OD=3k,CD=4k,繼而可得BC=2k,由平行線(xiàn)分線(xiàn)段成比例定理可得 ,繼而可求得DE=6k,在Rt△ODE中,利用勾股定理求出k的值即可得答案.
(1)∵OB=OF,
∴∠1=∠3,
∵點(diǎn)F是的中點(diǎn),
∴∠1=∠2,
∴∠2=∠3,
∴BD∥OE;
(2)連接OD,如圖,
∵直線(xiàn)CD是⊙O的切線(xiàn),
∴OD⊥CD,
在Rt△OCD中,∵tanC=,
∴設(shè)OD=3k,CD=4k.
∴OC=5k,BO=3k,
∴BC=2k.
∵BD∥OE,
∴,
即,
∴DE=6k,
在Rt△ODE中,∵OE2=OD2+DE2,
∴(3)2=(3k)2+(6k)2,
解得k=,
∴OB=3,
即⊙O的半徑的長(zhǎng)3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線(xiàn)BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為直角邊在AD右側(cè)作等腰直角三角形ADE,且∠DAE=90°,連接CE.
(1)如圖①,當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí):
①BC與CE的位置關(guān)系為 ;
②BC、CD、CE之間的數(shù)量關(guān)系為 .
(2)如圖②,當(dāng)點(diǎn)D在線(xiàn)段CB的延長(zhǎng)線(xiàn)上時(shí),結(jié)論①,②是否仍然成立?若不成立,請(qǐng)你寫(xiě)出正確結(jié)論,并給予證明.
(3)如圖③,當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),BC、CD、CE之間的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程(m+1)x2﹣2x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,
(1)求m的取值范圍;
(2)若x=1是方程的一個(gè)根,求m的值和另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A1的坐標(biāo)為(2,0),過(guò)點(diǎn)A1作x軸的垂線(xiàn)交直線(xiàn)l:y=x于點(diǎn)B1,以原點(diǎn)O為圓心,OB1的長(zhǎng)為半徑畫(huà)弧交x軸正半軸于點(diǎn)A2;再過(guò)點(diǎn)A2作x軸的垂線(xiàn)交直線(xiàn)l于點(diǎn)B2,以原點(diǎn)O為圓心,以OB2的長(zhǎng)為半徑畫(huà)弧交x軸正半軸于點(diǎn)A3;….按此作法進(jìn)行下去,則的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB 為⊙O 的直徑,C 為⊙O 上一點(diǎn),AD⊥CE 于點(diǎn) D,AC 平分∠DAB.
(1) 求證:直線(xiàn) CE 是⊙O 的切線(xiàn);
(2) 若 AB=10,CD=4,求 BC 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是小李上學(xué)用的自行車(chē),型號(hào)是24英吋(車(chē)輪的直徑為24英吋,約60厘米),為了防止在下雨天騎車(chē)時(shí)的泥水濺到身上,他想在自行車(chē)兩輪的陰影部分兩側(cè)裝上擋水的鐵皮(兩個(gè)陰影部分分別是以C、D為圓心的兩個(gè)扇形),量出四邊形ABCD中∠DAB=125°、∠ABC=115°,那么預(yù)計(jì)需要的鐵皮面積約是( 。
A. 942平方厘米 B. 1884平方厘米
C. 3768平方厘米 D. 4000平方厘米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某幼兒園為了加強(qiáng)安全管理,決定將園內(nèi)的滑滑板的傾斜角由45°降為30°,已知原滑滑板AB的長(zhǎng)為5米,點(diǎn)D、B、C在同一水平地面上.若滑滑板的正前方能有3米長(zhǎng)的空地就能保證安全,原滑滑板的前方有6米長(zhǎng)的空地,像這樣改造是否可行?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.414,≈1.732,≈2.449)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)幾何體的三視圖.
(1)寫(xiě)出該幾何體的名稱(chēng),并根據(jù)所示數(shù)據(jù)計(jì)算這個(gè)幾何體的表面積;
(2)如果一只螞蟻要從這個(gè)幾何體中的點(diǎn)B出發(fā),沿表面爬到AC的中點(diǎn)D,請(qǐng)你求出這個(gè)線(xiàn)路的最短路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)閱讀理解:
如圖①,如果四邊形ABCD滿(mǎn)足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做“完美箏形”.
將一張如圖①所示的“完美箏形”紙片ABCD先折疊成如圖②所示形狀,再展開(kāi)得到圖③,其中CE,CF為折痕,∠BCE=∠ECF=∠FCD,點(diǎn)B′為點(diǎn)B的對(duì)應(yīng)點(diǎn),點(diǎn)D′為點(diǎn)D的對(duì)應(yīng)點(diǎn),連接EB′,FD′相交于點(diǎn)O.
簡(jiǎn)單應(yīng)用:
(1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是 ;
(2)當(dāng)圖③中的∠BCD=120°時(shí),∠AEB′= °;
(3)當(dāng)圖②中的四邊形AECF為菱形時(shí),對(duì)應(yīng)圖③中的“完美箏形”有 個(gè)(包含四邊形ABCD).
拓展提升:
(4)當(dāng)圖③中的∠BCD=90°時(shí),連接AB′,請(qǐng)?zhí)角?/span>∠AB′E的度數(shù),并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com