【題目】為了解某市初三學(xué)生的體育測試成績和課外體育鍛煉時間的情況,現(xiàn)從全市初三學(xué)生體育測試成績中隨機抽取200名學(xué)生的體育測試成績作為樣本.體育成績分為四個等次:優(yōu)秀、良好、及格、不及格.

體育鍛煉時間

人數(shù)

4≤x≤6

2≤x<4

43

0≤x<2

15


(1)試求樣本扇形圖中體育成績“良好”所對扇形圓心角的度數(shù);
(2)統(tǒng)計樣本中體育成績“優(yōu)秀”和“良好”學(xué)生課外體育鍛煉時間表(如圖表所示),請將圖表填寫完整(記學(xué)生課外體育鍛煉時間為x小時);
(3)全市初三學(xué)生中有14400人的體育測試成績?yōu)椤皟?yōu)秀”和“良好”,請估計這些學(xué)生中課外體育鍛煉時間不少于4小時的學(xué)生人數(shù).

【答案】
(1)

解:由題意可得:

樣本扇形圖中體育成績“良好”所對扇形圓心角的度數(shù)為:(1﹣15%﹣14%﹣26%)×360°=162°


(2)

解:∵體育成績“優(yōu)秀”和“良好”的學(xué)生有:200×(1﹣14%﹣26%)=120(人),

∴4≤x≤6范圍內(nèi)的人數(shù)為:120﹣43﹣15=62(人);

故答案為:62.


(3)

解:由題意可得: ×14400=7440(人),

答:估計課外體育鍛煉時間不少于4小時的學(xué)生人數(shù)為7440人.


【解析】(1)直接利用扇形統(tǒng)計圖得出體育成績“良好”所占百分比,進(jìn)而求出所對扇形圓心角的度數(shù);
   。2)首先求出體育成績“優(yōu)秀”和“良好”的學(xué)生數(shù),再利用表格中數(shù)據(jù)求出答案;
   。3)直接利用“優(yōu)秀”和“良好”學(xué)生所占比例得出學(xué)生中課外體育鍛煉時間不少于4小時的學(xué)生人數(shù).此題主要考查了扇形統(tǒng)計圖以及利用樣本估計總體,正確利用扇形統(tǒng)計圖和表格中數(shù)據(jù)得出正確信息是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D AB 邊上的中點,將△ABC 沿過點 D 的直線折疊,DE 為折痕,使點 A 落在 BC F處,若∠B=40°,則∠EDF=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,ECD中點,連接AE并延長AEBC的延長線于點F.

(1)求證:CF =AD;

(2)若AD=2,AB=8,當(dāng)BC為多少時,點B在線段AF的垂直平分線上?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實數(shù)b的取值范圍是( 。
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:
第1個等式:a1= = ﹣1,
第2個等式:a2= = ,
第3個等式:a3= =2﹣ ,
第4個等式:a4= = ﹣2,
按上述規(guī)律,回答以下問題:
(1)請寫出第n個等式:an=
(2)a1+a2+a3+…+an=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ACB中,∠BAC=90°,AB=AC,分別過BC兩點作過點A的直線l的垂線,垂足為D、E;

1)如圖1,當(dāng)D、E兩點在直線BC的同側(cè)時,猜想,BD、CE、DE三條線段有怎樣的數(shù)量關(guān)系?并說明理由.

2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,DA、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3)如圖3∠BAC=90°,AB=25AC=35.點PB點出發(fā)沿B→A→C路徑向終點C運動;點QC點出發(fā)沿C→A→B路徑向終點B運動.點PQ分別以每秒23個單位的速度同時開始運動,只要有一點到達(dá)相應(yīng)的終點時兩點同時停止運動;在運動過程中,分別過PQPF⊥lFQG⊥lG.問:點P運動多少秒時,△PFA△QAG全等?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( 。

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某學(xué)校初四年紀(jì)學(xué)生每周平均課外閱讀時間的情況,隨機抽查了該學(xué)校初四年級m名同學(xué),對其每周平均課外閱讀時間進(jìn)行統(tǒng)計,繪制了如下條形統(tǒng)計圖(圖一)和扇形統(tǒng)計圖(圖二):

(1)根據(jù)以上信息回答下列問題:
①求m值.
②求扇形統(tǒng)計圖中閱讀時間為5小時的扇形圓心角的度數(shù).
③補全條形統(tǒng)計圖.
(2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù),求出這組數(shù)據(jù)的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知A(a,0),B(b,3),C(4,0),且滿足(a+b)2+|a﹣b+6|=0,線段AB交y軸于F點.

(1)求點A、B的坐標(biāo);

(2)點D為y軸正半軸上一點,若ED∥AB,且AM,DM分別平分∠CAB,∠ODE,如圖 2,求∠AMD的度數(shù);

(3)如圖 3,(也可以利用圖 1)①求點F的坐標(biāo);②坐標(biāo)軸上是否存在點P,使得△ABP和△ABC的面積相等?若存在,求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案