【題目】在△ABC中,AB=AC,∠A=60°,點(diǎn)D是線段BC的中點(diǎn),∠EDF=120°,DE與線段AB相交于點(diǎn)E,DF與線段AC(或AC的延長線)相交于點(diǎn)F.
(1)如圖1,若DF⊥AC,垂足為F,AB=4,求BE的長;
(2)如圖2,將(1)中的∠EDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,DF扔與線段AC相交于點(diǎn)F.求證:;
(3)如圖3,將(2)中的∠EDF繼續(xù)繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長線交與點(diǎn)F,作DN⊥AC于點(diǎn)N,若DN=FN,求證:.
【答案】2;見解析;見解析.
【解析】
試題根據(jù)四邊形的內(nèi)角和定理得出DE⊥AB,從而得到BE的長度;取AB的中點(diǎn)G,連接DG,得出DG為△ABC的中位線,則DG=DC,∠BGD=∠C=60°,根據(jù)四邊形對角互補(bǔ)得出∠GED=∠DFC,從而得到△DEG和△DFC全等,得到EG=CF,得出答案;取AB的中點(diǎn)G,連接DG,同⑵,易證△DEG≌△DFC得出EG=CF,設(shè)CN=x,根據(jù)Rt△DCN得出CD=2x,DN=x,根據(jù)題意得出EG、BE與x的關(guān)系,從而進(jìn)行說明.
試題解析:(1)、由四邊形AEDF的內(nèi)角和為,可知DE⊥AB,故BE=2
(2)、取AB的中點(diǎn)G,連接DG 易證:DG為△ABC的中位線,故DG=DC,∠BGD=∠C=60°
又四邊形AEDF的對角互補(bǔ),故∠GED=∠DFC ∴△DEG≌△DFC 故EG=CF
∴BE+CF=BE+EG=BG=AB
(3)、取AB的中點(diǎn)G,連接DG 同⑵,易證△DEG≌△DFC 故EG=CF
故BE-CF=BE-EG=BG= 設(shè) 在Rt△DCN中,CD=2x,DN=
在RT△DFN中,NF=DN=,故EG=CF= BE=BG+EG=DC+CF=2x+=
故BE+CF=
故
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的港珠澳大橋是目前橋梁設(shè)計(jì)中廣泛采用的斜拉橋,它用粗大的鋼索將橋面拉住,為檢測鋼索的抗拉強(qiáng)度,橋梁建設(shè)方從甲、乙兩家生產(chǎn)鋼索的廠方各隨機(jī)選取5根鋼索進(jìn)行抗拉強(qiáng)度的檢測,數(shù)據(jù)統(tǒng)計(jì)如下(單位:百噸)
甲、乙兩廠鋼索抗拉強(qiáng)度檢測統(tǒng)計(jì)表
鋼索 | 1 | 2 | 3 | 4 | 5 | 平均數(shù) | 中位數(shù) | 方差 |
甲廠 | 10 | 11 | 9 | 10 | 12 | 10.4 | 10 | 1.04 |
乙廠 | 10 | 8 | 12 | 7 | 13 | a | b | c |
(1)求乙廠5根鋼索抗拉強(qiáng)度的平均數(shù)a(百噸)、中位數(shù)b(百噸)和方差c(平方百噸).
(2)橋梁建設(shè)方?jīng)Q定從抗拉強(qiáng)度的總體水平和穩(wěn)定性來決定鋼索的質(zhì)量,問哪一家的鋼索質(zhì)量更優(yōu)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子廠商設(shè)計(jì)了一款制造成本為18元新型電子廠品,投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到每月銷售量y(萬件)與銷售單價(jià)x(元)之間的部分?jǐn)?shù)據(jù)如下:
銷售單價(jià)x(元/件) | … | 20 | 25 | 30 | 35 | … |
每月銷售量y(萬件) | … | 60 | 50 | 40 | 30 | … |
(1)求出每月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(2)求出每月的利潤z(萬元)與銷售單x(元)之間的函數(shù)關(guān)系式.
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售利潤率不能高于50%,而且該電子廠制造出這種產(chǎn)品每月的制造成本不能超過900萬元.那么并求出當(dāng)銷售單價(jià)定為多少元時(shí),廠商每月能獲得最大利潤?最大利潤是多少?(利潤=售價(jià)﹣制造成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):“頂點(diǎn)在圓上,兩邊與圓相交”,“同弧所對的圓周角相等”,小明在課后繼續(xù)對圓外角和圓內(nèi)角進(jìn)行了探究.
下面是他的探究過程,請補(bǔ)充完整:
定義概念:頂點(diǎn)在圓外,兩邊與圓相交的角叫做圓外角,頂點(diǎn)在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M為所對的一個(gè)圓外角.
(1)請?jiān)趫D2中畫出所對的一個(gè)圓內(nèi)角;
提出猜想
(2)通過多次畫圖、測量,獲得了兩個(gè)猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內(nèi)角______這條弧所對的圓周角;(填“大于”、“等于”或“小于”)
推理證明:
(3)利用圖1或圖2,在以上兩個(gè)猜想中任選一個(gè)進(jìn)行證明;
問題解決
經(jīng)過證明后,上述兩個(gè)猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.
(4)如圖3,F,H是∠CDE的邊DC上兩點(diǎn),在邊DE上找一點(diǎn)P使得∠FPH最大.請簡述如何確定點(diǎn)P的位置.(寫出思路即可,不要求寫出作法和畫圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)這次調(diào)查一共抽取了 名學(xué)生,其中安全意識為“很強(qiáng)”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是 ;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校有1800名學(xué)生,現(xiàn)要對安全意識為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有 名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時(shí)輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形的一條邊長為x,周長的一半為y,定義(x,y)為這個(gè)矩形的坐標(biāo)。如圖2,在平面直角坐標(biāo)系中,直線x=1,y=3將第一象限劃分成4個(gè)區(qū)域,已知矩形1的坐標(biāo)的對應(yīng)點(diǎn)A落在如圖所示的雙曲線上,矩形2的坐標(biāo)的對應(yīng)點(diǎn)落在區(qū)域④中,則下面敘述中正確的是( )
A. 點(diǎn)A的橫坐標(biāo)有可能大于3
B. 矩形1是正方形時(shí),點(diǎn)A位于區(qū)域②
C. 當(dāng)點(diǎn)A沿雙曲線向上移動(dòng)時(shí),矩形1的面積減小
D. 當(dāng)點(diǎn)A位于區(qū)域①時(shí),矩形1可能和矩形2全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】跳繩是大家喜聞樂見的一項(xiàng)體育運(yùn)動(dòng),集體跳繩時(shí),需要兩人同頻甩動(dòng)繩子,當(dāng)繩子甩到最高處時(shí),其形狀可近似看作拋物線,下圖是小明和小亮甩繩子到最高處時(shí)的示意圖,兩人拿繩子的手之間的距離為4,離地面的高度為1,以小明的手所在位置為原點(diǎn)建立平面直角坐標(biāo)系.
(1)當(dāng)身高為15的小紅站在繩子的正下方,且距小明拿繩子手的右側(cè)1處時(shí),繩子剛好通過小紅的頭頂,求繩子所對應(yīng)的拋物線的表達(dá)式;
(2)若身高為的小麗也站在繩子的正下方.
①當(dāng)小麗在距小亮拿繩子手的左側(cè)1.5處時(shí),繩子能碰到小麗的頭嗎?請說明理由;
②設(shè)小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,求的取值范圍.(參考數(shù)據(jù): 取3.16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點(diǎn),直線與x軸交于點(diǎn).
(1)求的值;
(2)過第二象限的點(diǎn)作平行于x軸的直線,交直線于點(diǎn)C,交函數(shù)的圖象于點(diǎn)D.
①當(dāng)時(shí),判斷線段PD與PC的數(shù)量關(guān)系,并說明理由;
②若,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com