【題目】ABC中,AB=AC,A=60°,點(diǎn)D是線段BC的中點(diǎn),EDF=120°,DE與線段AB相交于點(diǎn)E,DF與線段AC(或AC的延長線)相交于點(diǎn)F.

(1)如圖1,若DFAC,垂足為F,AB=4,求BE的長;

(2)如圖2,將(1)中的EDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,DF扔與線段AC相交于點(diǎn)F.求證:;

(3)如圖3,將(2)中的EDF繼續(xù)繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長線交與點(diǎn)F,作DNAC于點(diǎn)N,若DN=FN,求證:

【答案】2;見解析;見解析.

【解析】

試題根據(jù)四邊形的內(nèi)角和定理得出DEAB,從而得到BE的長度;取AB的中點(diǎn)G,連接DG,得出DG為ABC的中位線,則DG=DC,BGD=C=60°,根據(jù)四邊形對角互補(bǔ)得出GED=DFC,從而得到DEG和DFC全等,得到EG=CF,得出答案;取AB的中點(diǎn)G,連接DG,同,易證DEG≌△DFC得出EG=CF,設(shè)CN=x,根據(jù)RtDCN得出CD=2x,DN=x,根據(jù)題意得出EG、BE與x的關(guān)系,從而進(jìn)行說明.

試題解析:(1)、由四邊形AEDF的內(nèi)角和為,可知DEAB,故BE=2

(2)、取AB的中點(diǎn)G,連接DG 易證:DG為ABC的中位線,故DG=DC,BGD=C=60°

又四邊形AEDF的對角互補(bǔ),故GED=DFC ∴△DEG≌△DFC 故EG=CF

BE+CF=BE+EG=BG=AB

(3)、取AB的中點(diǎn)G,連接DG 同,易證DEG≌△DFC 故EG=CF

故BE-CF=BE-EG=BG= 設(shè) 在RtDCN中,CD=2x,DN=

在RTDFN中,NF=DN=,故EG=CF= BE=BG+EG=DC+CF=2x+=

故BE+CF=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的港珠澳大橋是目前橋梁設(shè)計(jì)中廣泛采用的斜拉橋,它用粗大的鋼索將橋面拉住,為檢測鋼索的抗拉強(qiáng)度,橋梁建設(shè)方從甲、乙兩家生產(chǎn)鋼索的廠方各隨機(jī)選取5根鋼索進(jìn)行抗拉強(qiáng)度的檢測,數(shù)據(jù)統(tǒng)計(jì)如下(單位:百噸)

甲、乙兩廠鋼索抗拉強(qiáng)度檢測統(tǒng)計(jì)表

鋼索

1

2

3

4

5

平均數(shù)

中位數(shù)

方差

甲廠

10

11

9

10

12

10.4

10

1.04

乙廠

10

8

12

7

13

a

b

c

1)求乙廠5根鋼索抗拉強(qiáng)度的平均數(shù)a(百噸)、中位數(shù)b(百噸)和方差c(平方百噸).

2)橋梁建設(shè)方?jīng)Q定從抗拉強(qiáng)度的總體水平和穩(wěn)定性來決定鋼索的質(zhì)量,問哪一家的鋼索質(zhì)量更優(yōu)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子廠商設(shè)計(jì)了一款制造成本為18元新型電子廠品,投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到每月銷售量y(萬件)與銷售單價(jià)x(元)之間的部分?jǐn)?shù)據(jù)如下:

銷售單價(jià)x(元/件)

20

25

30

35

每月銷售量y(萬件)

60

50

40

30

(1)求出每月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.

(2)求出每月的利潤z(萬元)與銷售單x(元)之間的函數(shù)關(guān)系式.

(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售利潤率不能高于50%,而且該電子廠制造出這種產(chǎn)品每月的制造成本不能超過900萬元.那么并求出當(dāng)銷售單價(jià)定為多少元時(shí),廠商每月能獲得最大利潤?最大利潤是多少?(利潤=售價(jià)﹣制造成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):頂點(diǎn)在圓上,兩邊與圓相交,同弧所對的圓周角相等,小明在課后繼續(xù)對圓外角和圓內(nèi)角進(jìn)行了探究.

下面是他的探究過程,請補(bǔ)充完整:

定義概念:頂點(diǎn)在圓外,兩邊與圓相交的角叫做圓外角,頂點(diǎn)在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M所對的一個(gè)圓外角.

(1)請?jiān)趫D2中畫出所對的一個(gè)圓內(nèi)角;

提出猜想

(2)通過多次畫圖、測量,獲得了兩個(gè)猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內(nèi)角______這條弧所對的圓周角;(大于、等于小于”)

推理證明:

(3)利用圖1或圖2,在以上兩個(gè)猜想中任選一個(gè)進(jìn)行證明;

問題解決

經(jīng)過證明后,上述兩個(gè)猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.

(4)如圖3F,H是∠CDE的邊DC上兩點(diǎn),在邊DE上找一點(diǎn)P使得∠FPH最大.請簡述如何確定點(diǎn)P的位置.(寫出思路即可,不要求寫出作法和畫圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問題:

(1)這次調(diào)查一共抽取了 名學(xué)生,其中安全意識為很強(qiáng)的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是 ;

(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)該校有1800名學(xué)生,現(xiàn)要對安全意識為淡薄”、“一般的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有 名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時(shí)輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形的一條邊長為x,周長的一半為y,定義(x,y)為這個(gè)矩形的坐標(biāo)。如圖2,在平面直角坐標(biāo)系中,直線x=1,y=3將第一象限劃分成4個(gè)區(qū)域,已知矩形1的坐標(biāo)的對應(yīng)點(diǎn)A落在如圖所示的雙曲線上,矩形2的坐標(biāo)的對應(yīng)點(diǎn)落在區(qū)域④中,則下面敘述中正確的是( )

A. 點(diǎn)A的橫坐標(biāo)有可能大于3

B. 矩形1是正方形時(shí),點(diǎn)A位于區(qū)域②

C. 當(dāng)點(diǎn)A沿雙曲線向上移動(dòng)時(shí),矩形1的面積減小

D. 當(dāng)點(diǎn)A位于區(qū)域①時(shí),矩形1可能和矩形2全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】跳繩是大家喜聞樂見的一項(xiàng)體育運(yùn)動(dòng),集體跳繩時(shí),需要兩人同頻甩動(dòng)繩子,當(dāng)繩子甩到最高處時(shí),其形狀可近似看作拋物線,下圖是小明和小亮甩繩子到最高處時(shí)的示意圖,兩人拿繩子的手之間的距離為4,離地面的高度為1,以小明的手所在位置為原點(diǎn)建立平面直角坐標(biāo)系.

(1)當(dāng)身高為15的小紅站在繩子的正下方,且距小明拿繩子手的右側(cè)1處時(shí),繩子剛好通過小紅的頭頂,求繩子所對應(yīng)的拋物線的表達(dá)式;

(2)若身高為的小麗也站在繩子的正下方.

①當(dāng)小麗在距小亮拿繩子手的左側(cè)1.5處時(shí),繩子能碰到小麗的頭嗎?請說明理由;

②設(shè)小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,的取值范圍.(參考數(shù)據(jù): 3.16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點(diǎn),直線x軸交于點(diǎn)

1)求的值;

2)過第二象限的點(diǎn)作平行于x軸的直線,交直線于點(diǎn)C,交函數(shù)的圖象于點(diǎn)D

①當(dāng)時(shí),判斷線段PDPC的數(shù)量關(guān)系,并說明理由;

②若,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案