【題目】如圖1,在△ABC中,∠A=30°,點P從點A出發(fā)以2cm/s的速度沿折線A—C—B運動,點Q從點A出發(fā)以a(cm/s)的速度沿AB運動,P,Q兩點同時出發(fā),當某一點運動到點B時,兩點同時停止運動.設運動時間為x(s),△APQ的面積為y(cm2),y關于x的函數(shù)圖象由C1 , C2兩段組成,如圖2所示.

(1)求a的值;
(2)求圖2中圖象C2段的函數(shù)表達式;
(3)當點P運動到線段BC上某一段時△APQ的面積,大于當點P在線段AC上任意一點時△APQ的面積,求x的取值范圍.

【答案】
(1)

解:在圖1中,過P作PD⊥AB于D,∵∠A=30°,PA=2x,

∴PD=PA·sin30°=2x· =x,

∴y= = .

由圖象得,當x=1時,y= ,則 = .

∴a=1.


(2)

解:當點P在BC上時(如圖2),PB=5×2-2x=10-2x.

∴PD=PB·sinB=(10-2x)·sinB,

∴y= AQ·PD= x·(10-2x)·sinB.

由圖象得,當x=4時,y= ,

×4×(10-8)·sinB= ,

∴sinB= .

∴y= x·(10-2x)· = .


(3)

解:由C1,C2的函數(shù)表達式,得 =

解得x1=0(舍去),x2=2,

由圖易得,當x=2時,函數(shù)y= 的最大值為y= .

將y=2代入函數(shù)y= ,得2= .

解得x1=2,x2=3,

∴由圖象得,x的取值范圍是2<x<3.


【解析】(1)C1段的函數(shù)解析式是點P在AC線段時y與x的關系,由S= AQ·(AQ上的高),而AQ=ax,由∠A=30°,PA=2x,可過P作PD⊥AB于D,則PD=PA·sin30°=2x· =x,則可寫出y關于x的解析式,代入點(1, )即可解出;(2)作法與(1)同理,求出用sinB表示出PD,再寫出y與x的解析式,代入點(4, ),即可求出sinB,即可解答;(3)題中表示在某x的取值范圍內(nèi)C1<C2 , 即此時C2的y值大于C1的y值的最大值,由圖易得,當x=2時,函數(shù)y= 的最大值為y= .將y=2代入函數(shù)y= ,求出x的值,根據(jù)函數(shù)y= ,的開口向下,則可得x的取值范圍.
【考點精析】關于本題考查的二次函數(shù)的圖象和二次函數(shù)的性質(zhì),需要了解二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在面積為12的平行四邊形ABCD中,過點A作直線BC的垂線交BC于點E,過點A作直線CD的垂線交CD于點F,若,則的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,AC=BC= ,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B.
(1)請你在圖中把圖補畫完整;
(2)求C′B的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展了手機伴我健康行主題活動.他們隨機抽取部分學生進行手機使用目的每周使用手機時間的問卷調(diào)查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應的圓心角度數(shù)是_______________。

2)補全條形統(tǒng)計圖

3)該校共有學生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)場擬建一間矩形種牛飼養(yǎng)室,飼養(yǎng)室的一面靠現(xiàn)有墻(墻足夠長),已知計劃中的建筑材料可建圍墻的總長為為50m.設飼養(yǎng)室長為x(m),占地面積為y(m2).


(1)如圖1,問飼養(yǎng)室長x為多少時,占地面積y最大?
(2)如圖2,現(xiàn)要求在圖中所示位置留2m寬的門,且仍使飼養(yǎng)室的占地面積最大。小敏說:“只要飼養(yǎng)室長比(1)中的長多2m就行了.”

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為做好食堂的服務工作,某學校食堂對學生最喜愛的菜肴進行了抽樣調(diào)查,下面試根據(jù)收集的數(shù)據(jù)繪制的統(tǒng)計圖(不完整):

(1)參加抽樣調(diào)查的學生數(shù)是______人,扇形統(tǒng)計圖中“大排”部分的圓心角是______°;

(2)把條形統(tǒng)計圖補充完整;

(3)若全校有3000名學生,請你根據(jù)以上數(shù)據(jù)估計最喜愛“烤腸”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列3×3網(wǎng)格圖都是由9個相同的小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:

(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形;

(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形;

(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.

(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里裝有顏色不同的黃、白兩種顏色的球共5只,某學習小組做摸球?qū)嶒灒瑢⑶驍噭蚝髲闹须S機摸出一個球記下顏色,再把它放回袋中,不斷重復 下表是活動中的一組統(tǒng)計數(shù)據(jù):

(1)請估計:當n很大時,摸到白球的頻率將會接近______;(精確到0.1)

(2)試估算口袋中白種顏色的球有多少只?

(3)請你設計一個增(減)袋中白球或黃球球個數(shù)的方案,使得從袋中摸出一個球,這只球是黃球的概率大于是白球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OC、OA、AC.
(1)如圖①,求∠OCA的度數(shù);
(2)如圖②,連接OB、OB與AC相交于點E,若∠COB=90°,OC=2 ,求BC的長和陰影部分的面積.

查看答案和解析>>

同步練習冊答案