【題目】如圖,平面直角坐標(biāo)系中的每個小正方形邊長為1,△ABC的頂點在網(wǎng)格的格點上.
(1)畫線段AD∥BC,且使AD=BC,連接BD;此時D點的坐標(biāo)是 .
(2)直接寫出線段AC的長為 ,AD的長為 ,BD的長為 .
(3)直接寫出△ABD為 三角形,四邊形ADBC面積是 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了宣傳2018年世界杯,實現(xiàn)“足球進(jìn)校園”的目標(biāo),任城區(qū)某中學(xué)計劃為學(xué)校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價.
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種品牌的足球共50個,并且B品牌足球的數(shù)量不少于A品牌足球數(shù)量的4倍,請設(shè)計出最省錢的購買方案,求該方案所需費(fèi)用,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店為了鼓勵營業(yè)員多銷售服裝,在原來的支付月薪方式(y1):每月底薪600元,每售出一件服裝另支付4元的提成,推出第二種支付月薪的方式(y2),如圖所示,設(shè)x(件)是一個月內(nèi)營業(yè)員銷售服裝的數(shù)量,y(元)是營業(yè)員收入的月薪,請結(jié)合圖形解答下列問題:
(1)求y1與y2的函數(shù)關(guān)系式;
(2)該服裝店新推出的第二種付薪方式是怎樣向營業(yè)員支付薪水的?
(3)如果你是營業(yè)員,你會如何選擇支付薪水的方式?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景
如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,
,于是.
遷移應(yīng)用
(1)如圖2,△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=120°,D,E,C三點在同一直線上,連接BD.
(ⅰ)求證:△ADB≌△AEC;
(ⅱ)請直接寫出線段AD,BD,CD之間的等量關(guān)系式.
拓展延伸
(2)如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.
(。┳C明:△CEF是等邊三角形;
(ⅱ)若AE=5,CE=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,某市自來水公司對每戶用水量進(jìn)行了分段計費(fèi),每戶每月用水量在規(guī)定噸數(shù)以下的收費(fèi)標(biāo)準(zhǔn)相同,規(guī)定噸數(shù)以上的超過部分收費(fèi)相同.如表是小明家1﹣4月用水量和交費(fèi)情況:
月份 | 1 | 2 | 3 | 4 |
用水量(噸) | 6 | 8 | 12 | 15 |
費(fèi)用(元) | 12 | 16 | 28 | 37 |
(Ⅰ)若小明家5月份用水25噸,則應(yīng)繳多少元水費(fèi)?
(Ⅱ)若該戶居民某月份用水為噸,則應(yīng)收水費(fèi)多少元?(用含的代數(shù)式表示,并化簡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線與軸分別交于點、點,直線交于點,是直線上一動點,且在點的上方,設(shè)點.
(1)當(dāng)四邊形的面積為38時,求點的坐標(biāo),此時在軸上有一點,在軸上找一點,使得最大,求出的最大值以及此時點坐標(biāo);
(2)在第(1)問條件下,直線左右平移,平移的距離為. 平移后直線上點,點的對應(yīng)點分別為點、點,當(dāng)為等腰三角形時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多項式2x3y﹣xy+16的次數(shù)為a,常數(shù)項為b,a,b分別對應(yīng)著數(shù)軸上的A、B兩點.
(1)a= ,b= ;并在數(shù)軸上畫出A、B兩點;
(2)若點P從點A出發(fā),以每秒3個單位長度單位的速度向x軸正半軸運(yùn)動,求運(yùn)動時間為多少時,點P到點A的距離是點P到點B的距離的2倍;
(3)數(shù)軸上還有一點C的坐標(biāo)為30,若點P和Q同時從點A和點B出發(fā),分別以每秒3個單位長度和每秒1個單位長度的速度向C點運(yùn)動,P到達(dá)C點后,再立即以同樣的速度返回,運(yùn)動的終點A,求點P和點Q運(yùn)動多少秒時,P,Q兩點之間的距離為4,并求出此時點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點E,連接CE,作BF⊥CE,垂足為F,則tan∠FBC的值為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com