【題目】如圖,已知在△ABC中,AB=AC=10cm,BC=8cm,D為AB中點,設(shè)點P在線段BC上以3cm/秒的速度由B點向C點運動,點Q在線段CA上由C點向A點運動.

(1)若Q點運動的速度與P點相同,且點P,Q同時出發(fā),經(jīng)過1秒鐘后△BPD與△CQP是否全等,并說明理由;
(2)若點P,Q同時出發(fā),但運動的速度不相同,當(dāng)Q點的運動速度為多少時,能在運動過程中有△BPD與△CQP全等?
(3)若點Q以(2)中的速度從點C出發(fā),點P以原來的速度從點B同時出發(fā),都是逆時針沿△ABC的三邊上運動,經(jīng)過多少時間點P與點Q第一次在△ABC的哪條邊上相遇?

【答案】
(1)

解:∵t=1秒,

∴BP=CQ=3×1=3cm,

∵AB=10cm,點D為AB的中點,

∴BD=5cm.

又∵PC=BC﹣BP,BC=8cm,

∴PC=8﹣3=5cm,

∴PC=BD.

又∵AB=AC,

∴∠B=∠C,

在△BPD和△CQP中,

∴△BPD≌△CQP(SAS).


(2)

解:∵vP≠vQ,∴BP≠CQ,

又∵△BPD≌△CPQ,∠B=∠C,則BP=PC=4cm,CQ=BD=5cm,

∴點P,點Q運動的時間 秒,

∴vQ= cm/秒;


(3)

設(shè)經(jīng)過x秒后點P與點Q第一次相遇,

由題意,得 x=3x+2×10,

解得x=

∴點P共運動了 ×3=80cm.

∴80=56+24=2×28+24,

∴點P、點Q在AB邊上相遇,

∴經(jīng)過 秒點P與點Q第一次在邊AB上相遇.


【解析】(1)由P,Q的速度相等,t=1秒時,CQ=BP=3cm,易得BD=CP=5,由AB=AC,則∠B=∠C,可證得△BPD≌△CQP;(2)△BPD與△CQP全等時,B與C對應(yīng),而vP≠vQ , 則BP≠CQ,則P不與Q對應(yīng),則P與P對應(yīng),即△BPD≌△CPQ,則BP=PC=4cm,CQ=BD=5cm,所以求出時間,再求Q的速度即可;(3)可設(shè)經(jīng)過x秒后點P與點Q第一次相遇,點Q的速度大于點P,則是Q追P的問題,點Q與點P相距AC+AB=20cm,數(shù)量關(guān)系:點Q的路程=點P的路程+20,解出時間,則求出P點的路程,算出P繞△ABC運動幾周余多少米,可算出點P在哪個位置.
【考點精析】解答此題的關(guān)鍵在于理解等腰三角形的性質(zhì)的相關(guān)知識,掌握等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是△ABC內(nèi)的一點,試比較線段AB+AC與PB+PC的大小.若AB=10,AC=13求PB+PC的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏嘗試著將矩形紙片ABCD(如圖①,AD>CD)沿過A點的直線折疊,使得B點落在AD邊上的點F處,折痕為AE(如圖②); 再沿過D點的直線折疊, 使得 C點落在DA邊上的點N處, E點落在AE邊上的點M處,折痕為 DG(如圖).如果第二次折疊后,M點正好在∠NDG的平分線上,那么矩形ABCD的長與寬的比值為( )

A.2
B.3
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是( 。

A.x3+x2x5B.x32x29

C.x23x5D.5x2x35x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語句中,不是命題的是( )
A.若兩角之和為90,則這兩個角互補
B.同角的余角相等
C.作線段的垂直平分線
D.相等的角是對頂角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把點(2,﹣3)先向右平移3個單位長度,再向下平移2個單位長度得到的點的坐標(biāo)是(
A.(5,﹣1)
B.(﹣1,﹣5)
C.(5,﹣5)
D.(﹣1,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中最適合普遍調(diào)查的是(

A.調(diào)查某品牌燈泡的使用壽命B.調(diào)查振興區(qū)居民網(wǎng)上購物情況

C.調(diào)查錦江山上各種鳥的總數(shù)量D.調(diào)查我國大型客機C919的零件質(zhì)量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a2=25,|b|=3,則a+b的值是(
A.﹣8
B.±8
C.±2
D.±8或±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)頻數(shù)分布表或頻數(shù)分布直方圖求加權(quán)平均數(shù)時,統(tǒng)計中常用各組的組中值代表各組的實際數(shù)據(jù),把各組的頻數(shù)看作相應(yīng)組中值的權(quán),請你依據(jù)以上知識,解決下面的實際問題. 為了解5路公共汽車的運營情況,公交部門統(tǒng)計了某天5路公共汽車每個運行班次的載客量,并按載客量的多少分成A,B,C,D四組,得到如下統(tǒng)計圖:

(1)求A組對應(yīng)扇形圓心角的度數(shù),并寫出這天載客量的中位數(shù)所在的組;
(2)求這天5路公共汽車平均每班的載客量;
(3)如果一個月按30天計算,請估計5路公共汽車一個月的總載客量,并把結(jié)果用科學(xué)記數(shù)法表示出來.

查看答案和解析>>

同步練習(xí)冊答案