【題目】已知銳角△ABC內接于⊙O,AD⊥BC于點D,連接AO.
(1)如圖1,求證:∠BAO=∠CAD;
(2)如圖2,CE⊥AB于點E,交AD于點F,過點O作OH⊥BC于點H,求證:AF=2OH;
(3)如圖3,在(2)的條件下,若AF=AO,tan∠BAO=,BC=,求AC的長.
【答案】(1)詳見解析;(2)詳見解析;+3.
【解析】
(1)延長AO交⊙O于K,連接BK.利用等角的余角相等證明即可.
(2)延長CO交⊙O于M,連接AM,BM,連接BF.證明四邊形AMBF是平行四邊形,BM=2OH即可解決問題.
(3)延長CO交⊙O于M,連接AM,BM,連接BF.證明∠BAO=∠DAC=∠DBF,推出tan∠DBF=tan∠BAP==,設DF=x,則BD=3x,CD=2﹣3x,AD=6﹣9x,AF=BM=6﹣10x,構建方程即可解決問題.
(1)證明:延長AO交⊙O于K,連接BK.
∵AK是直徑,
∴∠ABK=90°,
∵AD⊥BC,
∴∠ADC=90°,
∵∠BAO+∠K=90°,∠DAC+∠C=90°,∠K=∠C,
∴∠BAO=∠DAC.
(2)證明:延長CO交⊙O于M,連接AM,BM,連接BF.
∵CM是直徑,
∴∠CBM=∠MAC=90°,
∵OH⊥BC,
∴BH=CH,∠OHC=∠CBM=90°,
∴AD∥BM,
∵OC=OM,
∴BM=2OH,
∵AD⊥BC,CA⊥AB,
∴BF⊥AC,∵A⊥AC,
∴AM∥BF,
∴四邊形AMBF是平行四邊形,
∴AF=BM,
∴AF=2OH.
(3)解:延長CO交⊙O于M,連接AM,BM,連接BF.
由(2)可知,四邊形AMBF是平行四邊形,
∴AF=BM,
∴OA=AF,
∴BM=OA,
∴CM=2BM,
∵∠CBM=90°,
∴∠BCM=30°,
∵∠BAO=∠DAC=∠DBF,
∴tan∠DBF=tan∠BAP==,設DF=x,則BD=3x,CD=2﹣3x,AD=6﹣9x,AF=BM=6﹣10x,
∵BC=2,
∴BM=BCtan30°=2,
∴6﹣10x=2,
∴x=,
∴AC==+3.
科目:初中數學 來源: 題型:
【題目】如圖,A是以BC為直徑的⊙O上一點,I是△ABC的內心,AI的延長線交⊙O于點D,過點D作BC的平行線交AB、AC的延長線于E、F.下列說法:①△DBC是等腰直角三角形;②EF與⊙O相切;③EF=2BC;④點B、I、C在以點D 為圓心的同一個圓上.其中一定正確的是_______(把你認為正確結論的序號都填上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】瀾鑫商場為“雙十一購物節(jié)”請甲乙兩個廣告公司布置展廳,已知乙單獨完成此項任務的天數是甲單獨完成此任務天數的2倍.若兩公司合作4天,再由甲公司單獨做3天就可以完成任務.
(1)甲公司與乙公司單獨完成這項任務各需多少天?
(2)甲公司每天所需費用為5萬元,乙公司每天所需費用為2萬元,要使這項工作的總費用不超過40萬元,則甲公司至多工作多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2m+1)x+m2﹣4=0有兩個不相等的實數根
(1)求實數m的取值范圍;
(2)若兩個實數根的平方和等于15,求實數m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=的圖象與一次函數y=ax﹢b的圖象交于C(4,﹣3),E(﹣3,4)兩點.且一次函數圖象交y軸于點A.
(1)求反比例函數與一次函數的解析式;
(2)求△COE的面積;
(3)點M在x軸上移動,是否存在點M使△OCM為等腰三角形?若存在,請你直接寫出M點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O直徑,點D為AB下方⊙O上一點,點C為弧ABD中點,連接CD,CA.
(1)若∠ABD=α,求∠BDC(用α表示);
(2)過點C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);
(3)在(2)的條件下,若OH=5,AD=24,求線段DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進一批進價為20元/件的日用商品,第一個月,按進價提高50%的價格出售,售出400件;第二個月,商店準備在不低于原售價的基礎上進行加價銷售,根據銷售經驗,提高銷售單價會導致銷售量的減少.銷售量y(件)與銷售單價x(元)的關系如圖所示.
(1)求y與x之間的函數表達式;
(2)第二個月的銷售單價定為多少元時,可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com